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Electric vehicles will contribute to emissions reductions in the United States, but their charging may challenge electricity grid
operations. We present a data-driven, realistic model of charging demand that captures the diverse charging behaviours of
future adopters in the US Western Interconnection. We study charging control and infrastructure build-out as critical factors
shaping charging load and evaluate grid impact under rapid electric vehicle adoption with a detailed economic dispatch model
of 2035 generation. We find that peak net electricity demand increases by up to 25% with forecast adoption and by 50% in a
stress test with full electrification. Locally optimized controls and high home charging can strain the grid. Shifting instead to
uncontrolled, daytime charging can reduce storage requirements, excess non-fossil fuel generation, ramping and emissions.
Our results urge policymakers to reflect generation-level impacts in utility rates and deploy charging infrastructure that pro-

motes a shift from home to daytime charging.

he use of electric vehicles (EVs), coupled with an electricity
grid that is decarbonizing, can help the United States achieve
emissions reduction targets"”. Industry analysts forecast that
the number of light-duty EVs and their charging plugs will mul-
tiply to over 300 million and 175 million, respectively, worldwide
by 2035, an order of magnitude increase when compared with
2021°. EV charging couples transportation to the grid, yet the two
sectors’ transformations are largely uncoordinated, despite their
shared objectives of lowering emissions*'". While the implications
of transportation electrification for the grid have been studied at
low, near-term levels of adoption, identifying and mitigating system
consequences at deep levels of EV adoption has remained a critical
challenge as it requires models that capture the diverse behaviours
and conditions of future drivers''.

Charging infrastructure, controls and drivers’ behaviour have
implications for grid operations, making the long-term planning
to support daily charging demand under high electrification sce-
narios challenging. Driver behaviour is highly heterogeneous and
stochastic'*"'%; where, when and how often drivers choose to plug-in
determines their load shape and demand on the grid. Adding charg-
ing controls and changing the landscape of charging infrastructure
by increasing or decreasing the availability of different charging
options represent powerful tools to reshape charging to improve
grid impacts at future, deep levels of EV adoption. Charging con-
trols, also called smart or managed charging, reshape demand by
delaying charging to a preset time or by modulating the power
delivered throughout a vehicle’s charging session in response to
electricity prices. The charging infrastructure networks design
and geography, in turn, change the choices available to drivers and

reshape system-wide charging demand by changing the charging
location and time of day (for example, from overnight if charging at
home to midday if charging while at work).

Charging access is key to avoiding charging inconvenience,
which can be a barrier to both adoption and continued use of
EVs'®20, Wealthy residents of single family homes (SFHs) are
over-represented among early EV adopters and are likely to have
access to home charging®'. Lower-income households, renters and
residents of apartment buildings or multi-unit dwellings (MUDs),
meanwhile, are all less likely to have access to home charg-
ing!®!1617:2223 despite targeted subsidies*. Assuming the use of
charging infrastructure will continue to match early-adopter behav-
iour would misrepresent future drivers’ options and could miss
valuable opportunities for households, utilities and the regulator.

Existing approaches to modelling large-scale charging demand
impute charging decisions based on early-adopter behaviours or
modeller assumptions about driver behaviour”'**-?". Numerous
previous studies have used charging controls to improve the grid
impact and costs of EVs®**>2025-3 However, most studies have lim-
ited scenarios regarding charging infrastructure access, use centrally
optimized controls rather than site by site, rate schedule-driven opti-
mizations or focus on current grid resources and conditions, and
few include grid storage and calculate emissions (Supplementary
Note 1). Previous studies with different charging infrastructure sce-
narios have mostly focused on early adopters and do not concep-
tualize infrastructure as a tool for charging control”'*****37% The
importance of charging infrastructure for long-distance travel and
high-energy days to support EV adoption has been a focus of other
recent studies'***,
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Fig. 1] Overview of the methods for evaluating grid impacts and modelling EV charging demand. a, An overview of the modelling approach. To study the
grid impacts of EV charging scenarios, charging demand was simulated for each region using a model of driver behaviour, regional profiles were aggregated,
and grid dynamics were modelled including non-fossil fuel generation, storage and the dispatch of fossil fuel generators. In scenarios with charging control,
timer controls in residential charging were applied while generating each county's demand, and load modulation controls in workplace charging were
applied to the aggregate uncontrolled workplace profile for WECC. States are identified by postal abbreviation. The hourly dispatch of net demand and total
demand across both fossil and non-fossil fuel generation resources is illustrated for a sample day under the "Model grid" step. Original net and total demand
profiles are shown with dot-dash and dotted lines, respectively, and the smoother net and total demand profiles achieved through the dispatch of 10 GW

of grid storage are shown with solid and dashed lines, respectively. b, The model for EV charging demand in each region as a function of neighbourhood
characteristics, access to charging and driver behaviours (Methods). The arrows are colour coded according to the data sources: US Census and Community
Survey*® and EASI MRI Consumer Survey®® (light blue), California Vehicle Rebate Project (purple)”’, California Energy Commission’® and National Renewable
Energy Laboratory survey (red), University of California at Davis study'? (yellow), set of observed drivers’ charging sessions (green) and modelled (grey) as
detailed in Methods. EASI MRI stands for Easy Analytic Software Inc. Mediamark Research, a database from which county-level annual mileage data was

accessed.

The charging of EVs has consequences for the distribution,
transmission and generation of electricity"'. For example, uncon-
trolled charging has been shown to increase peak demand and cause
transformer overloading®, force early replacement of equipment’,
overload transmission lines®, worsen power quality*® or require
substation upgrades®. Avoiding the high costs of distribution sys-
tem upgrades is a key value offered by controlled charging. EVs can
also provide value to the grid by providing services of frequency
regulation and real-time ramping*>*.

In this study, we model daily charging demand for personal EVs
under high electrification scenarios in 2035 for the US portion of
the Western Interconnection (WECC) grid, covering 11 states with
over 75 million people”. We compare a range of future scenarios
to understand how charging infrastructure, control and driver
behaviour will together affect grid impact. Our study includes two
strategies (control and infrastructure build-out) and uses realistic,
detailed models of all three elements: driver behaviour, control and
grid dispatch. We focus on typical, aggregate charging patterns of
personal light-duty vehicles as drivers of generational-level grid
impact. Our aim is to identify what scenarios of large-scale EV
adoption best mitigate the negative consequences of charging and
chart an effective decarbonization pathway via vehicle-grid integra-
tion. Our results urge the coupling of charging and grid-planning
measures. To make charging controls more effective, policymakers
should consider coordinating the management of grid generation
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and distribution impacts. Most importantly, planning should target
build-out of charging infrastructure over the next decade that sup-
ports a shift from home to daytime charging in WECC.

Increased electricity consumption

Driver behaviour is highly heterogeneous. We use a probabilistic,
data-driven method to capture driver charging preferences based
on patterns observed in real charging data (Methods). We cali-
brate our model using a dataset of 2.8 million sessions recorded for
27.7 thousand battery electric vehicle drivers in the California Bay
Area in 2019. We model the connection between charging behav-
iour clusters and drivers' income, housing, miles travelled and
access to charging options as shown in Fig. 1. We implement con-
trolled charging site by site to simulate realistic responses to elec-
tricity rates. We focus on the US portion of the WECC grid and
simulate charging for the more than 48 million personal vehicles in
its 11 main states (Methods).

Recent planning in California finds 50% of the light-duty fleet
will need to be electrified by 2035 to reach upcoming decarboniza-
tion deadlines and track timelines for the end of internal combus-
tion engine vehicle sales'®*. In line with these and other studies of
high electrification*"*, we include results for 50% adoption or 24
million EVs in WECC (electrification of half the personal vehicle
fleet) in the year 2035. Industry and policymakers, however, are
working to accelerate adoption even faster. We include results for
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Fig. 2 | Profile of aggregate EV charging demand illustrated for each infrastructure and control scenario. a,b,d,e, The uncontrolled profiles for a typical

weekday (left) and weekend (right) are shown for Universal Home access (a); High Home access (b); Low Home, High Work access (d) and Low Home,
Low Work access (e). f-j, The weekday profile is shown for one example of each type of control: midnight SFH timers with Universal Home access

(£); 9 p.m. SFH timers with High Home access (g); workplace peak minimization with Low Home, High Work access (h); workplace average emissions
minimization with Low Home, Low Work access (i); and random SFH timers between 8 p.m. and 2:30 a.m. with High Home access (j) (Methods).
Profiles are illustrated for full electrification for the US states in WECC to show the maximum modelled demand. Demand is aggregated in local time for
this illustration, but in the simulation the two time zones are reflected and there is a Th delay between the timers set on Pacific and Mountain Time.

¢, Business As Usual is a special case of High Home access with a mixture of residential timers at 8 p.m., 9 p.m., 10 p.m. and midnight and peak

minimization workplace control. The weekday and weekend profile for each
Level 2 charging and DCFC stands for Direct Current Fast Charging.

100% adoption (full electrification of the personal vehicle fleet) as
a stress test to characterize grid readiness for deep adoption and
identify what additional changes will be needed in the grid or in
charging. We also present the sensitivity of all key results to higher
or lower levels of adoption throughout the paper.

To calculate the grid impact at the generation level under each
charging scenario, we dispatch the aggregate electricity demand for
an entire year to a model of future grid generation resources that
reflects forecast retirements and additions of fossil fuel generators
and increased wind, solar and grid storage (Methods). We assume
wind and solar generation vary hour by hour throughout the year
as they did in 2019.

Baseline annual electricity consumption is assumed to increase by
16% on average by 2035 due to electrification in applications other
than transportation, such as heating and cooling*. We find that the
addition of EV charging at deep adoption further increases annual
electricity consumption by the same order of magnitude. Each per-
cent increase in EV adoption increases total consumption by about
0.11% in this system (Supplementary Figure 7). At 50% adoption, this
amounts to a 5% increase over the 2035 baseline. Combined, the total
increase due to electrification in all sectors is up to 22% over 2019 lev-
els. In the stress test with 100% EV adoption, consumption is increased
by 11% by EVs and by up to 28% overall over 2019 levels.
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scenario is repeated to compile the full year's charging demand. L2 stands for

Charging scenarios

The timing of this increase in electricity use is critical, and
the grid impacts of charging vary substantially with different
demand profiles. Thus, we model four scenarios for future charg-
ing infrastructure varying home charging access from universal
to low based on recent California survey data (Methods). With
Universal Home access, 86% of total electricity consumption
occurs at home, compared with 22% in the Low Home access
cases (Supplementary Note 5 and Supplementary Table 2). Within
each access scenario, we model four types of conventional charg-
ing control to represent common implementations in the United
States today®: SFH timers set for 9 p.m. and 12 a.m. start times
based on residential EV rates’®”' and site-level, uni-directional
load modulation control at workplaces responding to demand
charges through peak minimization or to time-of-use rates based
on average grid emissions (Avg Em). Spikes in demand from syn-
chronous timers are observed in today’s charging data and persist
in many planning scenarios'®*, despite their impacts on grid sta-
bility**»**. For contrast we model a third type of SFH timer control
where participating drivers are randomly assigned a start time on
the half hour between 8 p.m. and 2:30 a.m. Finally, we model an
additional scenario, Business As Usual, as a special case of High
Home Access with both workplace control and timers to represent
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Fig. 3 | Timing and change in peak total demand after the addition of EV charging. The timing of peak total demand depends on the interaction of
charging and baseline demand. a, The demand profile for each access scenario with uncontrolled charging over baseline non-EV demand for 2035. L2
stands for Level 2 charging and DCFC stands for Direct Current Fast Charging. b,c, The clock faces below each profile illustrate the timing of peak total
demand for that access scenario under all control options for 50% EV adoption (b) and 100% EV adoption (c). Min(peak) refers to peak minimization
workplace control and Min(Avg Em) refers to the workplace control designed to minimize average grid emissions. Thick borders are used to denote p.m.
peaks. We observe the timing of the peak shifts from 5 p.m. pre-EVs to late evening in many of the home charging scenarios or to mid-morning in the
daytime-charging scenarios. d, The percentage change in peak total demand as adoption of EVs is varied from 10% to 100%.

today’s dominant mix of control strategies. This results in 25 total
scenarios, a subset of which is illustrated in Fig. 2.

Increased peak demand

Baseline demand in WECC is the highest in the late afternoon and
early evening. Peak total electricity demand on a typical weekday in
2035 without EV's is modelled to be around 109 GW at 5 p.m. Each
charging scenario lines up with this differently, as shown in Fig. 3.
High home charging adds demand in the evening and pushes the
peak later towards 7 p.m., while daytime charging creates new peaks
mid-morning at 10 a.m. and 11 a.m. The value of the peak increases
modestly with the addition of EV charging until around 30% adop-
tion, after which there are break points in several scenarios. The
steepest increases occur in the charging scenarios with the highest
peaks once the timings of the peak total demand and peak charging
demand are aligned. With 50% adoption, the increase ranges from
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3% to 9% depending on the scenario, as shown in Fig. 4. In the stress
test with 100% adoption, charging increases peak total demand by
9-26%. Daytime-charging scenarios increase peak total demand by
more than the High Home and Universal Home charging scenarios,
except in cases with 9 p.m. timers.

Net demand and coupling with the grid

Total demand, however, does not tell the full story of grid impact,
and it is critical to study how this demand is felt across the different
sources of electricity generation. Net demand, calculated by remov-
ing the contribution of non-fossil fuel generation, drives the dis-
patch of fossil fuel generators.

To better understand these impacts, we developed a detailed
model of the grid in 2035 based on the outputs of recent state-
and region-level capacity expansion planning’>*. We extended
the merit order-based dispatch model presented by Deetjen and
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b,c, A comparison of the increase in peak total (b) and peak net demand (¢) when compared with electricity demand pre-EVs. Values for both 50%
and 100% EV adoption are shown. We observed that High Home access leads to the lowest increase in peak total demand, but daytime-charging
scenarios lead to the lowest increases in peak net demand. The following short forms are used for the access scenarios: UH = Universal Home;

HH =High Home; LHLW = Low Home, Low Work; LHHW = Low Home, High Work. d,e, The timing of peak net demand in each scenario for 50% EV
adoption (d) and 100% EV adoption (e). We find that peak net demand occurs in the evening in every scenario as most daytime charging is covered

by non-fossil fuel generation.

Azevedo” to reflect announced generator retirements and addi-
tions, we increased baseline demand, and we increased solar and
wind generation to a base case 3.5X and 3x 2019 levels, respec-
tively. We summed charging demand across fast and slow stations,
home, workplace and public charging to study the impacts on the
bulk-power system, and we assumed the distribution system could
handle the demand (Methods).

Changes in peak net demand, shown in Fig. 4, reveal the
opposite impact as total demand. Home charging scenarios, not
daytime-charging scenarios, have a worse impact on peak net
demand and put more stress on the remaining fleet of fossil fuel
generators. Thanks to high solar generation during the day, peak
net demand occurs in the evening in every scenario. The Business
As Usual scenario increases typical peak net demand by 1.6x more
than the Low Home, High Work scenario with 50% EVs or 1.8x

936

with 100%. In the worst case, the Universal Home access scenario
with 9 p.m. SFH timers increases it by 3.3X or 3.4x.

Focusing on daytime charging to minimize grid impacts is the
first major conclusion of this study. First drawn here, it is supported
by all following analyses. The timing of added demand is more
important in the future grid with increased renewable generation.
Daytime-charging scenarios benefit from their alignment with solar
generation while overnight-charging scenarios miss that opportunity.

Grid capacity consequences

To ensure the grid’s capacity to support charging under high levels
of EV adoption, storage will be needed. A small amount, 0.39 GW,
is needed to meet baseline demand. California’s recent planning tar-
gets 9.7 GW of 4h duration grid storage by 2030°%, which would be
a more than 40X increase over 2019 levels.
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Fig. 5 | Limits to the grid's capacity to support high EV adoption and the impact on grid storage. a, The maximum level of EV adoption for which charging
can be supported before there is insufficient generation capacity at least 1h in the year in the 2035 grid. There is capacity to support more EVs in the Low
Home access scenarios, thanks to better alignment of charging with hours of low baseline demand and higher renewable generation. This model of the grid
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Maximum. b, The minimum capacity of 4 h duration storage that would enable the grid to support charging for increasing levels of EV adoption. This type
of storage is dispatched after all other generation resources to cover unmet demand and we assume additional solar is deployed to charge it (Methods).

¢, A close-up look at the amount of storage required to support 50% or 100% EV adoption in 2035. With uncontrolled charging in the best case, the Low
Home, High Work access scenario would require just 4.2 GW or 3.6% of typical weekday peak total demand for that scenario. In our stress test with 100%
EV adoption, the grid would need 8.1GW of storage or 6.1% of typical weekday peak total demand. At 50%, we find the storage requirement varies by a
factor of 1.9% from 3.9 GW to 7.4 GW between scenarios. At 100%, we find the requirement varies by 3.3x from 7.4 GW to 24.5 GW between scenarios.

We find that 10 GW of storage installed in WECC is enough
for the grid to support at least 50% EV adoption. In WECC in
2035 with Business As Usual EV charging, 10 GW is between 8%
and 9% of peak total demand on a typical weekday or between
6% and 7% of peak total demand on an extreme day. The grid
can support more EVs in scenarios with more daytime charging
and fewer EVs in scenarios with more home charging, as shown
in Fig. 5a.

In the best cases, with Low Home access, Business As Usual or
High Home access with midnight or random timers, the grid can
support charging for 100% EV adoption. In the worst case, with
Universal Home access and 9 p.m. timers, the grid can support only
59% EV adoption.

Charging controls are often presented as a solution to grid capac-
ity constraints and, indeed, we find that 12 a.m. SFH timers and ran-
domized SFH timers substantially increase the level of EV adoption
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that the grid can support. In the Universal Home access scenario,
they increase the capacity from 67% to 86% and 83%.

Minimum grid storage requirements

Adding 10 GW of storage, however, is expensive, and thus we com-
pute how much storage is needed in each scenario. In Fig. 5b, we
show the minimum amount of 4h grid storage that would be suf-
ficient to cover all unmet demand. Fortunately, most scenarios
require less than 10 GW to reach 50% or even 100% EV adoption, as
shown in Fig. 5b,c. Again, we find that scenarios with more daytime
charging are better than those with high home charging.

Policies supporting a future with Low Home, High Work access
could translate into remarkable storage savings. With uncontrolled
charging and 50% EV adoption, that scenario would decrease the
storage requirement by 1.3X compared with Business As Usual
or 1.7x compared with uncontrolled Universal Home access.
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scenarios, fastest in those with more daytime charging.

Switching from Business As Usual charging to the Low Home, High
Work access charging scenario would reduce the cost of installed
storage by US$0.7 billion with an optimistic 143 US$ kWh™"' forecast
for the cost of storage or US$1.5billion with a higher forecast cost of
299 US$kWh-! (refs. *>*°). These savings are substantial compared
with total electricity costs (Supplementary Note 6) and grow sub-
stantially as we look at higher levels of EV adoption. In the stress
test with 100% EV adoption, the switch to Low Home, High Work
access would yield savings of US$1.6billion or US$3.4billion with
either cost forecast.

Storage can also provide other values to the grid. Policies encour-
aging daytime charging could translate into better grid reliability by
freeing storage capacity to act as reserve for extreme days or provide
other grid services, rather than cover the peak demand induced by
EV charging.

The second major conclusion of this study is that common
charging control implementations can cause severe generation-level
impacts at deep adoption. Timer control, in particular, can have sub-
stantial negative impacts. Studying the increase in peak net demand
in Fig. 4, we saw 9 p.m. SFH timers lead to high increases, up to
25% with 50% EV adoption or up to 50% with 100% EV adoption.
The impacts on storage are less severe at 50% adoption, but looking
to Fig. 5b, we can see that storage demand grows very quickly at
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higher levels. Additional generation capacity at 9 p.m. would need
to be added before EV adoption reaches 100% in the Universal
Home access scenario to avoid demand for storage topping 24 GW,
an amount over 18% of typical peak total demand in 2035. With
Low Home, High Work access, peak minimization control would
increase the storage requirement by 1.5x over the uncontrolled
amount by pushing charging into the late afternoon where baseline
demand is already high, increasing peak net demand.

Ramping and non-fossil fuel generation impacts

In this section, we assume the planned amount of 10 GW grid stor-
age is added and operated to smooth net demand. Even so, there
are substantial 1 h ramps in the final profiles dispatched to the fossil
fuel generators, as shown in Fig. 6. This is an important metric for
grid reliability, as frequent and fast ramping of fossil fuel generators
can shorten plant lifetimes and increase operational costs**®'. All
scenarios start from a situation where there are no EVs, and add-
ing daytime charging decreases ramping by flattening net demand
while adding home charging increases ramping because it aligns
with the baseline peak (Fig. 5 and Supplementary Note 7). Random
and 12a.m. SFH timers can decrease ramping in some scenarios,
but the effect of adding control is small in comparison with the
effect of switching between charging access scenarios.
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shown for two levels of EV adoption—50% (a,c) and 100% (b,d)—and two scenarios of renewable generation in 2035: the base case Medium Renewables
with 3.5x and 3x the wind and solar of 2019 (a,b) and High Renewables with 5x 2019 levels of each (¢,d). We find that daytime-charging scenarios have
lower emissions than home charging scenarios under both grid conditions. The worst scenario emissions are higher than the best by 5.0% and 36.6%,
respectively, in the two grids with 50% EV adoption. We see the same trends with 100% EV adoption, with slightly smaller spreads of 4.5% and 23.0%
between the best and worst scenarios. e, The median (50th percentile) profile of average and marginal emissions for weekdays in 2035; the shaded bands
show the range from the 25th to 75th percentile, highlighting the uncertainty. f,g, The merit order of generators arranged by cost as used by the dispatch
model’’: generation cost (f) and CO, emission rate (g) for each generator. The width of the bar for each generator shows its capacity. The dispatch order

is highly variable throughout the year with variable historical fuel prices and each week's merit order mixes generators in this way. Additional weeks are

presented in Supplementary Fig. 12.

For some of our modelled days in the year, non-fossil fuel gen-
eration exceeds demand. Without modelling transmission, we can-
not determine if this excess generation is curtailed or exported to
another region. In either case, it may represent a missed opportunity
for WECC to reduce its emissions and increase its use of non-fossil
fuel sources. Without EVs, the total annual excess non-fossil fuel
generation is around 2.8 TWh. This amount decreases in all sce-
narios as more EVs are added, most quickly in scenarios with more
daytime charging as shown in Fig. 6. Under the Business As Usual
scenario with 50% EV adoption, there is 1.3 TWh; this drops to
just 0.5 TWh with 100% EV adoption. Scenarios with high daytime
charging align better with renewable generation and make use of
more of that excess energy (Supplementary Note 7). Again, chang-
ing charging access has a bigger effect than adding control.

Grid emissions

Tailpipe emissions for internal combustion engine passenger vehi-
cles sold in the United States vary by type (Supplementary Note 8).
As light-duty trucks and sport utility vehicles (SUVs) are the most
popular segment, the US Environmental Protection Agency (EPA)
estimates that the average passenger vehicle in the United States
emits approximately 404 g of CO, per mile from its tailpipe®’. Sedans
emit less; the 2019 Honda Civic, for example, emits approximately
276 g of CO, per mile (ref. ©°). We find that the added grid emissions
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of CO, per mile of EV charging in WECC are substantially lower,
between 84 g and 88g of CO, per mile in a base case scenario for
2035 renewables with 50% EV adoption or between 89 g and 93 g of
CO, per mile with 100% EV adoption. This represents a more than
4x improvement in operational emissions compared with the aver-
age internal combustion engine vehicle or a 3X improvement com-
pared with a sedan, which is comparable in size and style to the EV's
modelled here (Methods and Supplementary Note 8). Similar drops
in SO, and NOy are also observed (Supplementary Figs. 8 and 9).

Scenarios with less home charging yield lower CO, emissions per
mile, as shown in Fig. 7. This result is consistent across both grid
scenarios and EV adoption levels. Under the base case ‘Medium
Renewables” scenario with 3.5x and 3x 2019 levels of solar and
wind, the spread between the best and worst case is 5% at 50% EV
adoption or 4.5% at 100% EV adoption. With High Renewables at
5% 2019 levels, we see a larger difference in emissions between sce-
narios. Universal Home has up to 36% higher emissions per mile
than Low Home, High Work access with 50% EVs, or up to 23%
higher emissions with 100% EVs.

Different charging control strategies do not change our result
by more than 2%. Uncontrolled workplace charging is well aligned
with solar generation, and we see that average emissions minimi-
zation control does not meaningfully reduce emissions relative to
uncontrolled. This occurs, in part, because average and marginal
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emissions are misaligned. Average emissions are low during the day
thanks to high solar generation, but marginal emissions are often
higher during the day than at other times (Supplementary Figs. 10
and 11). Though average emissions have been decreasing, marginal
emissions have been increasing in the United States over the past
decade®. The control used average emissions as a fixed objective
throughout the year. This led to marginally better use of excess
non-fossil fuel generation, as we saw in Fig. 7, but there were only
up to 100 days in the year with excess non-fossil fuel generation to
target. On the other days, this control increased daytime demand
for fossil fuel generators with often high marginal emissions.
Improving this control design, however, would be difficult
because the profile of marginal emissions and the dispatch order
of generators changes throughout the year. Fig. 7b shows the high
uncertainty in marginal emission factors, often higher at midday,
and average emission factors, which are lowest at midday. Fig. 7c
shows the merit order of fossil fuel generators from one week in
the middle of the year. Both high- and low-emitting generators are
present throughout the merit order, the daily profile of marginal
emission factors is highly variable, and shifting demand for these
generators has an inconsistent, small impact on total emissions.

Changing the grid

Current grid planning depends on models of future charging
demand. This study has tested the sensitivity of those plans to dif-
ferent realizations of charging based on scenarios of driver behav-
iour, infrastructure and control. In Fig. 8, we test the sensitivity of
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our results to updates in grid planning. In each case, we draw the
same conclusion: Low Home charging access reduces EV grid emis-
sions, storage requirements, ramping and excess non-fossil fuel gen-
eration when compared with scenarios of High or Universal Home
charging access. The costs and emissions benefits of each charging
scenario are discussed in Supplementary Note 9.

We provide a sensitivity analysis to natural gas prices, vehicle bat-
tery capacity and the prevalence of fast charging in Supplementary
Figs. 17-19.

Discussion

Our results show the potential for charging infrastructure to
improve the grid integration of EVs in WECC at deep levels of
adoption. In the future grid with higher renewable generation, tim-
ing is more important and net demand tells a very different story
than total demand. Shifting drivers from home to daytime charg-
ing improves all metrics of grid impact including ramping, use of
non-fossil fuel generation, storage requirements and emissions.
This insight is robust across varying levels of EV adoption.

Our results demand expanded daytime-charging access; simply
limiting home charging could negatively impact adoption and con-
tribute to inequitable access to EV ownership. Policymakers should
ensure daytime-charging options are convenient, inexpensive,
widespread and open access to the public.

While the emissions reductions unlocked by switching between
charging scenarios are modest with medium levels of renewables,
the needed grid storage requirements are substantial. Storage is
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expensive, current grid penetration is low and the industry is already
under pressure to scale up in the face of other grid challenges. By
avoiding the evening peak and better aligning with renewables,
daytime-charging scenarios reduce the amount of storage required
to support EV charging and free it to provide other services.

Our results also reveal challenges with charging controls based
on existing and proposed rate schedules. Grid operator central-
ized controls can change this situation to guarantee smooth grid
operations.

We reveal a conflict between system- and site-level benefits. Peak
minimization control is widely implemented at commercial sites
based on equipment capacity limits and electricity rates designed
to protect distribution system infrastructure’. However, spreading
workplace charging throughout the day increases demand in the
late afternoon when high baseline demand and decreasing solar
generation already strain the grid at the generation level, leading to
higher storage requirements. Given the high costs of both grid stor-
age and distribution system upgrades, further research is needed to
evaluate the trade-off between these objectives.

A similar conflict was recently identified with valley-filling con-
trol of home charging in the United Kingdom®. This also repre-
sents a tension between near-term concerns about infrastructure
upgrades and long-term concerns about grid decarbonization.
Utilities in California are moving away from demand charges
at commercial EV sites to improve the economic case for station
operators and encourage adoption®. A similar issue arises in resi-
dential rate design between simple and complex structures, which
have better impacts on the grid*, but introduce practical, regulatory
and ethical challenges involved in assigning different rates to neigh-
bouring customers.

We find that workplace control designed to align charging with
low average grid emissions does not realize meaningful reduc-
tions when implemented. High variability in the dispatch order of
generators and the profile of marginal emissions makes designing
emissions-reducing rate schedules challenging. In addition to bal-
ancing distribution- and generation-level impacts, future electricity
rates should better harmonize with wholesale electricity prices and
could vary day by day with grid generation conditions.

Different assumptions regarding future baseline demand and
generation resources could lead to different results, possibly invert-
ing the dynamics of daytime and nighttime charging. For example,
controlled home charging could be best in systems with low over-
night demand and high dependence on overnight wind generation.
Similarly, seasonal effects caused by changing outdoor temperature
could impact the results in some regions. Coupling should also be
explored with different scenarios of electrification in other sectors
than transportation and with different pathways for grid decarbon-
ization. In any case, the time of day of charging matters.

The build-out of new charging stations represents a power-
ful multi-year timescale form of charging control to improve the
impacts of EV charging, support equitable widespread adoption,
reduce emissions, support renewable integration and smooth the
transition to a decarbonized future.

Methods

Overview. We develop a model of EV charging and the electricity grid to study
the consequences of charging demand on emissions, grid capacity, costs, storage
and renewable integration in 2035 (Fig. la). First, we develop scenarios for the
future minute-by-minute EV charging demand, modelling drivers’ charging
behaviour across the WECC states using a probabilistic, data-driven model of
driver behaviour and charging. We then explore a range of scenarios for controlled
charging or for changing drivers’ access to charging at home and at work. We
model controlled charging in both residential and workplace settings based on
existing electricity rates. We repeat the typical weekday and weekend day profile
for each charging scenario to represent a full year of charging demand. Second,
we extend an existing model of the electricity grid to represent conditions and
operation in 2035, using a reduced-order dispatch model to simulate the use of
fossil fuel generators and considering future levels of renewable generation and
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grid storage. Then, combining the two elements, we calculate the grid dispatch over
all 8,760 hours of the year and the emissions associated with the added demand
from EV charging to study the impacts of each scenario.

EV charging demand. EV charging demand is driven by driver behaviour and
vehicle type: where, when, how, how often and how much each driver charges.
To model charging demand in WECC, we build on and substantially extend
our earlier model of charging, which clustered drivers into distinct groups by
their observed charging behaviours®’. The complete modelling approach is
detailed here.

Here we model only personal, light-duty vehicles and do not model scenarios
for commercial medium- and heavy-duty vehicles. Commercial vehicles will follow
very different charging patterns, dictated more by scheduling than individual
driver behaviour or preferences. Medium- and heavy-duty vehicles will also
experience different adoption timelines®.

A driver’s charging profile is influenced by mobility needs, by the
characteristics of the vehicle and, critically, by access to charging in different
locations. The data used for this study captures a wide range of behaviours for
drivers of different makes and models of EVs.

To model the charging behaviour of drivers of lower-income groups, future
adopters and other drivers under-represented in historical charging data, we used
those three factors as an intermediate: we parameterize current drivers’ observed
behaviour groups on their energy needs, vehicle battery capacity and access to
charging and model how those factors would change to represent future drivers of
different income or housing in different regions of the United States. The probabilistic
model of charging demand connecting these features is depicted in Fig. 1b.

Each connection in Fig. 1b represents a conditional dependency: given
the driver’s region, we model the probability they would have a particular type
of housing, level of income and annual distance to travel; given the driver’s
income and housing type, we model the probability they would have a large- or
small-battery capacity vehicle and their probability of having access to different
types of home or workplace charging; and given the driver’s annual mileage, we
model their total annual demand for charging energy. The links were fit using a
range of inputs and datasets described below.

Modelling the full range of early-, mid- and late-stage adopters is a key
challenge to long-term planning for EVs. Late adopters are best represented in
today’s data among residents of MUDs, drivers without access to home charging
and drivers with small-battery vehicles. With this method, the unique behaviour
patterns of drivers in each of those segments are captured and rescaled to build
future charging scenarios.

The driver behaviour groups are identified by clustering drivers from a large
dataset of real charging sessions*’; each cluster represented a unique type of driver
with a pattern of charging across different segments, charging at different times of
day and charging with different frequencies. We design the feature vector for each
driver to include their vehicle battery capacity and statistics describing their use
of each charging segment: their number of sessions, their frequency of charging
on weekends rather than weekdays and their mean session start time, energy and
duration within each segment. We model the daily charging decisions and session
parameters separately for the drivers in each group. The data do not reveal any
clear direct connections between drivers’ behaviour groups and socioeconomic
indicators after accounting for access, energy use and vehicle battery capacity. The
behaviours observed and captured by these clusters represent revealed preferences
of real drivers. Several behaviours identified in other studies are confirmed in
this data including, for example, the presence of more and less risk-averse drivers,
strong habits of regular charging and mixed use of different infrastructure'>".
These revealed behaviours are different from those identified through stated
preference surveys'”. The arrival times were further validated using data from the
2016-2017 National Household Transportation Survey** across different household
income levels for respondents in the Bay Area (Supplementary Note 4).

To generate the scenarios presented in the paper, we model the charging
demand for each county in the main 11 states in WECC separately and aggregate
the regional profiles. WECC refers to the Western Interconnection, overseen by the
Western Electricity Coordinating Council. In this study we excluded the Canadian
and Mexican portions of the territory. We shift all charging demand onto Pacific
time when creating the aggregate demand.

By concatenating the weekday and weekend profiles to compile one year of
charging, we assume seasonal effects caused by changes in outdoor temperature
can be neglected.

Data used to model charging demand. We accessed the number of passenger
vehicles and the county-level distributions of housing types, household incomes
and travel demand from census, community and consumer survey data’>*. We
model the dependence of access to residential charging on income and housing
type using data from a 2021 survey of Californians jointly conducted by the
California Energy Commission and the National Renewable Energy Laboratory™.
The survey defines three bins for annual household income: up to $60,000,
between $60,000 and $100,000 and greater than $100,000. We match the survey
housing types to five bins in the census data: SFH detached, SFH attached, low-
and mid-rise apartments, high-rise apartments and mobile homes. We model
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access to workplace charging based on a 2018 survey of California commuters'.
We model the dependence of battery capacity on driver income using data from
the California Clean Vehicle Rebate Project on over 400,000 purchases of electric
vehicles in California between 2010 and 20207".

To model driver behaviour, we use a dataset of over 2.8 million charging
sessions from 27.7 thousand battery electric vehicle drivers recorded by a large
charging station provider in 2019 in the California San Francisco Bay Area. Each
session is associated with a unique driver ID and the start time, end time, energy,
charging rate and location category are known. The sessions cover five segments:
workplace level 2 (L2) charging, public L2 charging, public fast charging (DCFC),
SFH residential L2 charging and MUD residential L2 charging. L2 charging
occurred at 6.6kW and DCFC occurred at 150 kW.

Data cleaning is described in further detail in Supplementary Note 2 and
Supplementary Methods, and statistics about the drivers and sessions are
presented in Supplementary Figs. 1-3. Seventy-five percent of the sessions occur
at workplaces, followed by 17% in public, 8% at SFHs and less than 1% (3,592
sessions) at MUDs. Of the vehicles, 53% have large battery capacities (greater than
50kWh) and 47% have smaller battery capacities. The most common make is Tesla,
followed by Chevrolet and Nissan. This dataset serves as revealed preference data
and contains a rich set of behaviours.

Fitting model of charging demand. We assume that all drivers have access to
public charging. We label home or workplace charging access for drivers in the
dataset based on their charging history in 2019. We model free and paid workplace
charging as separate categories of access and assign free access to drivers whose
median session fee in 2019 was below US$0.05. We define four scenarios by
varying drivers’ access to charging. For ‘Universal Home access, we assume every
driver of every housing and income level would have access to charging at home.
For ‘High Home access, we model access to home charging based on the ‘potential
access with parking modification’ scenario from the survey”, assuming that L2
charging would be installed for all drivers who responded that they could install
some type of charging at their residence. In both ‘Universal Home access’ and
‘High Home access, we that assume 50% of high-income drivers would have access
to workplace charging based on the 2018 study'?, and lower-income drivers would
be less likely to have access. For ‘Low Home, Low Work, we modelled access to
home charging based on the ‘existing access’ scenario from the survey’”, assuming
that only drivers who already park beside Level 1 (L1) charging equipment would
be able to install L2 home chargers. For ‘Low Home, High Work, we used the
same model of low access to home charging but increased the probability of
access to workplace charging, bounded by the fraction of Californians who

drive to commute to work®. In all cases we assume workplace charging was free
for 75% of those with access. The scenarios are illustrated in Fig. 1 and
Supplementary Fig. 28.

We model the vehicle purchase decisions in the Clean Vehicle Rebate Project
data with logistic regression, representing each driver’s income with their zip
code’s median household income and using high-end vehicle makes to represent
larger battery vehicles. The mean probability of a driver purchasing a large battery
vehicle is 30.6%, 33.2% and 37.9% for drivers in the low-, middle- and high-income
bins, respectively. We model the distribution of drivers’ total annual energy use
by assuming a high mean efficiency in future EVs of 5 miles per kWh (ref. *) with
negligible losses to charging efficiency and define seven bins aligned with the
annual mileage distributions: (0,600), (600, 1,000), (1,000, 1,600), (1,600, 2,000),
(2,000, 3,000), (3,000, 4,000), (4,000, +) kWh. We assume that the distribution
of EV's over counties will match the current distribution of passenger vehicles at
the high levels of EV adoption studied in this paper.

We cluster the drivers using agglomerative clustering with Ward’s method.
The clustering algorithm is initialized with each driver as a separate cluster. Let
x4 represent the normalized feature vector describing driver d. At each step the
algorithm chooses two clusters to combine such that the total within-cluster
variance” is minimized. Where C, denotes the set of drivers in cluster  and x&
represents the centroid of the feature vectors of drivers in C, this can be
expressed as

(&)

L
. d_ .G
min E E [|x* — x7|]2.

=1 deg

This creates a hierarchy of clusters; the elbow plot showing the marginal benefit
of each increase in the number of clusters is used to select the optimal cut-off. We
cluster the drivers in each bin of annual charging energy separately and found a
total of 136 groups. The typical weekday load profile for drivers in each group is
illustrated in Supplementary Fig. 26.

We model the dependence of driver group on access, battery capacity and
energy by calculating the distribution of cluster labels for drivers within each bin.
Specifically, where N, ;- denotes the number of drivers with access A in battery
capacity bin B and energy bin E and where N¢ denotes the number of drivers in
group G, the probability is calculated as P(G|A, B, E) = N p°/Na g

The probability of a driver in a given group charging in each segment on a
weekday or weekend day is modelled using the charging histories of drivers in
the group. For each driver group G and charging segment z, we model the joint
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distribution of session parameters, start time and energy, s, using a Gaussian
mixture model with up to K=10 components ref. *). The probability density
function of the mixture can therefore be expressed as

K
P(s) = ) P(sIk)P(k), P(slk) = N (slpyo o).

k=1

(2

Each component, k, in the mixture model is a Gaussian distribution and its weight
in the mixture is P(k). Each component represents a distinct pattern of charging
behaviour that occurs in the sessions observed in segment z for drivers in group
G. In this notation, component k has mean y; and standard deviation o, and A is
short-hand for the standard Gaussian distribution formula.

We tested the sensitivity of charging behaviours to US states using the National
Household Travel Survey® and found that any differences in behaviour beyond
those captured by our model of energy needs were small.

For a small number of battery and energy bins, there are no drivers with MUD
access: we model the behaviour group distribution for those bins by using other
bins in the MUD access category, matching as well as possible first by access, then
energy and then battery capacity, based on observations of the relative impact of
each on a group's profile. Modelling home charging access, we assume charging
for residents of mobile homes could be represented by our data on MUDs and we
derate the results of the survey by 50% to reflect the specific difficulty of installing
L2 instead of L1 charging at a mobile home.

Because of the probabilistic, open-loop structure and the size of the census
mileage bins, the total annual energy varies slightly between uncontrolled
scenarios, from 8.654 X 10’ MWh for the ‘Low Home High Work’ scenario to
8.994 x 10’ MWh for the ‘Universal Home’ scenario, a less than 5% difference.

Application of model of charging demand. To generate the daily charging
demand in each scenario, we use this model to sample each charging session,
repeating to simulate charging for the total number of vehicles in each region. The
total set of sessions, their start times, energies and segment charging rates, were
used to define the uncontrolled charging load profiles with 1 min time resolution.
With this approach, we were able to generate the typical weekday and weekend
demand profiles representing 48.6 million drivers for each scenario in under 9 min
on a laptop computer. Controlled or smart charging is applied to the output of this
module, using either the set of session parameters or the uncontrolled profiles.

Controlled EV charging. We model two types of controlled charging: load-shifting
control at single family residences, where an uncontrolled session is delayed to a
preset start time; and load modulation control at workplaces, where each vehicle at
a site’s charging rate is modulated throughout its session to optimize the aggregate
load profile. We focus on uni-directional charging because of its widespread
implementation. Considerable regulatory, social and technical barriers remain to
widespread deployment of bi-directional or vehicle-to-everything (V2X) charging,
despite growing academic research on the topic. These challenges include the
impact of V2X on battery health, drivers’ acceptance of V2X programs, taxation
and warranty implications and the development of sufficient charging protocol,

regulations and standards*"”".

Workplace charging control. To estimate the effect of load modulation control
at large scale, we fit a data-driven model of control results for smaller-scale
sites, following our method proposed by Powell et al.”. The complete approach
is detailed here. In each case the driver receives the same amount of energy

as without control. We implement peak minimization and average emissions
minimization.

We simulate 1,000 workplace site-days with 150 vehicles in each by randomly
sampling from the workplace charging sessions in the dataset. The optimization
problem for each day’s charging is subject to constraints limiting the charging
rate, charging time interval and ensuring each vehicle receives the same amount
of energy as in the uncontrolled session. We assume the session parameters are
known in advance. Written as functions of the total site load L at each time of day
t, the controlled site load after peak minimization is L* = argmin max, L. Given
the daily average emission factor profile, e/, simulated by the dispatch model for
a scenario without EV charging demand, the controlled site load after emissions
minimization is L' =argmin}¢'L".

We use the results to learn a data-driven model of the mapping from the
uncontrolled to controlled site profiles, f: L — L'. We model f with ridge regression,
normalize and divide the 1,000 site profiles into training, development and testing
sets and train the model with cross-validation and a grid search over the ridge
parameter. The model root mean squared errors on the development set for the
peak minimization and emission minimization optimizations respectively were
2.06% and 3.34% of the peak load.

In the optimization formulation for workplace charging emissions
minimization, we added a small regularization term proportional to the slope of
the aggregate profile to encourage a smoother, more realistic charging dispatch.

To model the final profiles for the workplace control scenarios, we apply the
trained model for each optimization objective to the total WECC uncontrolled
workplace charging profile.
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Residential timer control. Over 31% of the residential charging sessions in our
charging dataset demonstrate the use of timers to delay evening start times until
the local utility’s lowest price period. We assume the same response rate in all
future scenarios with timers.

We model load-shifting timer control by identifying the components in
the Gaussian mixture models of session behaviours which represent those
behaviours and shifting their start times. The ‘Random Timers’ scenario
represents a theoretical case where residents using timers were randomly assigned
rate schedules with lowest price periods starting at 8:30 p.m., 9 p.m., 9:30 p.m.,
10p.m.,, .., 2a.m. and 2:30 a.m. To model uncontrolled residential charging, we
remove those components of the mixture models and add their weight to other
components with evening start times.

On weekends, the energy distributions for components of residential charging
demand are more variable: modelling uncontrolled residential charging, we
specifically target non-timer components with the closest energies to the timer
components being removed.

Grid model. We model the US portion of WECC, building on the reduced-order
generator dispatch model proposed by Deetjen and Azevedo’””” and extending the
model to consider both non-fossil fuel generation and grid storage.

The dispatch model constructs a merit order of generators for each week in
the year using historical cost data and dispatches generators by lowest cost to
meet each hour of demand. Costs and generator availability are updated weekly
or monthly, depending on the available data, resulting in 52 different merit orders
throughout the year. We construct the model using the latest available data from
2019 and we add several extensions to represent the future grid: we remove or add
generating units based on announced retirements and additions through 2035;
we increase the baseline demand to represent electrification in other sectors; we
include two scenarios for increased renewable generation; we model the behaviour
of projected grid-scale storage additions and we add the demand from our EV
charging scenarios.

As historical data on fuel price and production are used to calculate the
generation cost for each plant, factors including efficiency, contract difference, and
location lead plants of the same type to have different generation costs. As a result,
the generators are not well ordered by their emission rates.

A range of grid models are used in the literature on EV charging impact,
including models of transmission””, unit commitment*** and others**?. The
reduced-order dispatch model proposed by Deetjen and Azevedo™ is fast and
computationally inexpensive, allowing us to compute and compare many scenarios.
It is also open-source, highly customizable and based on publicly available data,
allowing us to share our model of the future grid open-source, as well. A more
detailed literature review is included in Supplementary Note 1.

Data used in grid model. Data collected by the EPA through its Continuous
Emissions Monitoring Systems give the hourly operation, fuel consumption,
capacity and emissions for each fossil fuel generating unit in WECC’®. Data
collected by the EPA in its Emissions and Generation Integrated Resource database
give the construction date, fuel type and location of each plant™. Data collected

by the US Energy Information Administration Form 923 dataset give the fuel
purchases and prices for coal, natural gas and oil plants*. Hourly generation from
non-fossil fuel sources including nuclear, hydro, wind, and solar was accessed
through the US Energy Information Administration Electric System Operating
Data website®'.

Modelling the future grid. Planned and announced generation changes for 2035
are the result of capacity expansion planning models which include a Business

As Usual base case forecast of EV charging demand. We use the results of these
models and announcements to update our model of grid generation, then change
the portion of demand from EVs to test the sensitivity of grid impacts to different
charging scenarios.

Plants or units with announced retirements through 2035 are removed from
the set of generators™: 7,644 MW of natural gas and 17,175 MW of coal capacity.
Announced additions are included by duplicating the most similar existing plants,
prioritizing those most recently online and in the same region as the additions™:
14,283 MW of natural gas and no coal.

Baseline demand is scaled by a factor of 1.16 to represent electrification based
on the Electrification Futures Study’s Reference electrification and Moderate
technology advancement scenario load profile**. This factor was calculated as
the average percent increase in consumption over 2018 levels across all states in
WECC, excluding that associated with transportation electrification, using data
made available by Mai et al.** and interpolating between the years 2030 and 2040.
This estimate represents the effect of a growing population, business-as-usual
forecast increases in the use of electric technologies for heating, cooling, cooking
and other end uses* and moderate improvements in technology and efficiency™.

We develop two scenarios for the expansion of renewable generation based on
recent projections spurred by California’s Senate Bill 100, “The 100 Percent Clean
Energy Act of 2018, We assume the increases in capacity projected for California
could be mirrored across the WECC region. Our ‘Medium Renewables’ scenario
based on the 2035 projections puts wind and solar capacity 3x and 3.5 2019 levels
respectively; and our ‘High Renewables’ scenario based on the 2045 projections
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puts wind and solar capacity each at 5x 2019 levels. We model a baseline amount
of battery storage in WECC of 10 GW capacity and 4h duration based on the
same report’>*,

We calculate the future demand faced by fossil fuel generators, Dy, by
subtracting the adjusted non-fossil fuel based generation, G,,, ¢ from the total
demand, D, adjusted for electrification by the factor a,., and adjusted to include
the added demand from EV charging, Dyy,. The calculation can be expressed as

2019 2019
+ Ghon-comb ) > 3

Diotal = %elect (D comb

2019

2019
b total ~ Chydro, nuclear ~ — *wind Swind

comb = D

2019 “
~solarGsolar T PEVs:

We use multipliers, a, and a,,,q, to adjust the renewable generation and in
so assume that future installations will have the same capacity factors and
operations as those in the 2019. We operated the 10 GW of baseline storage
with charging schedule r, before dispatch for peak-shaving, optimizing the
operation to minimize the norm of the demand faced by combustion generators,
r* = argmin ||Deombp — 71]|2- Any overgeneration is curtailed at this point
to ensure a non-negative Dy gi,uchea- The final amount dispatched to the
generators was

Dcomb, dispatched = Pcomb — 'l )
We also apply a second type of storage, after the generator dispatch, using
additional storage to cover any unmet demand and optimizing to find the
minimum additional capacity of 4h storage needed.

The capacity of the grid to support EVs is limited by the maximum total
capacity of the generators in each week of the year.

To test capacity and study impacts at lower adoption levels, we scale the output
of the model for EV charging demand at 100%, assuming a constant distribution
of adoption.

The capacity limit is the first percent EV adoption when the total load
including EV's could not be supported. This measure is more sensitive to extreme
days than studying the peak on an average day, but it represents a real limitation
and important grid impact. It also represents an important threshold for grid
reliability; operating near this limit, the grid is likely to fall short on days of
lower-than-average generation or higher-than-average demand.

The dispatch model uses a heuristic to implement minimum downtime
constraints for coal plants®’. We assume these constraints would be active for
the same time periods in the future grid. The dispatch model updates each week
based on historical data on periods certain generators were offline in 2019, so the
maximum generation capacity varies each week. When the window for which a
minimum downtime constraint is triggered crossed the division between one week
and the next, the capacity in that period is limited by the lower of the two weeks’
capacities. Meanwhile, the storage requirement is calculated not based on weekly
limits but with an hourly time series of the demand that could not be met when
running the dispatch model.

Projections of storage capacity in 2035 are highly uncertain and cover a
wide range of values. Announced additions in WECC yield an approximate 8X
increase over 2020 levels™. Though California already has more than three times
the grid-scale storage capacity of any other state™, the Senate Bill 100 report
requirement of 10 GW by 2030 would represent an increase of 50X the 2019 level
of 0.2 GW (ref. **). We assume this value would represent a fair base case projection
for the total installation in WECC by 2035.

In the second type of storage implementation when adding additional storage
capacity to cover unmet demand, we include a small regularization term in the
objective to smooth operation of the battery. The additional storage is needed to
meet evening capacity constraints. We assume it would be charged using additional
solar and we do not iterate or re-dispatch with the added demand for charging the
additional storage.

Grid model outputs. We calculate the total emissions at each hour as the sum of
emissions from each generator that was dispatched. The last generator dispatched
for each hour of demand is identified as the marginal generator, and its emission
rate in kgCO, kWh! determines the marginal emissions factor. To attribute the
emissions caused by adding EVs in each scenario, we subtract the total emissions
from the dispatch of a parallel scenario without EV charging demand.

We calculate the excess non-fossil fuel generation by summing the excess
generation on hours where non-fossil fuel generation exceeds demand. The model
does not represent transmission, interconnection or congestion; therefore, we do
not model whether excess generation is curtailed or exported to another region.

Data availability

The charging data used in this study cannot be made publicly available due to
privacy concerns for the individual drivers, but the model objects and charging
profiles that were calibrated with that data and used in this study have been
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made available at https://data.mendeley.com/datasets/y872vhtfrc/2with https://
doi.org/10.17632/y872vhtfrc.2. This minimum dataset makes it possible to

run the charging model and simulate new future charging scenarios to test.

G.V.C. (gcezar@stanford.edu) can be contacted with questions about access.

The grid model was run using publicly available data. Instructions for its
collection and processing are included with the code at https://github.com/
Stanford-Sustainable-Systems-Lab/speech-grid-impact. Please contact S.P,, L.A. or
R.R. with any questions.

Code availability

The code used for the analysis presented in this paper has been made available at
https://github.com/Stanford-Sustainable-Systems-Lab/speech-grid-impact with
DOI 10.5281/zenodo.7031008. Please contact S.P. with any questions.
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