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The use of electric vehicles (EVs), coupled with an electricity 
grid that is decarbonizing, can help the United States achieve 
emissions reduction targets1,2. Industry analysts forecast that 

the number of light-duty EVs and their charging plugs will mul-
tiply to over 300 million and 175 million, respectively, worldwide 
by 2035, an order of magnitude increase when compared with 
20213. EV charging couples transportation to the grid, yet the two 
sectors’ transformations are largely uncoordinated, despite their 
shared objectives of lowering emissions4–10. While the implications 
of transportation electrification for the grid have been studied at 
low, near-term levels of adoption, identifying and mitigating system 
consequences at deep levels of EV adoption has remained a critical 
challenge as it requires models that capture the diverse behaviours 
and conditions of future drivers11.

Charging infrastructure, controls and drivers’ behaviour have 
implications for grid operations, making the long-term planning 
to support daily charging demand under high electrification sce-
narios challenging. Driver behaviour is highly heterogeneous and 
stochastic12–16; where, when and how often drivers choose to plug-in 
determines their load shape and demand on the grid. Adding charg-
ing controls and changing the landscape of charging infrastructure 
by increasing or decreasing the availability of different charging 
options represent powerful tools to reshape charging to improve 
grid impacts at future, deep levels of EV adoption. Charging con-
trols, also called smart or managed charging, reshape demand by 
delaying charging to a preset time or by modulating the power 
delivered throughout a vehicle’s charging session in response to 
electricity prices. The charging infrastructure network’s design 
and geography, in turn, change the choices available to drivers and 

reshape system-wide charging demand by changing the charging 
location and time of day (for example, from overnight if charging at 
home to midday if charging while at work).

Charging access is key to avoiding charging inconvenience, 
which can be a barrier to both adoption and continued use of 
EVs16–20. Wealthy residents of single family homes (SFHs) are 
over-represented among early EV adopters and are likely to have 
access to home charging21. Lower-income households, renters and 
residents of apartment buildings or multi-unit dwellings (MUDs), 
meanwhile, are all less likely to have access to home charg-
ing12,13,16,17,22,23 despite targeted subsidies24. Assuming the use of 
charging infrastructure will continue to match early-adopter behav-
iour would misrepresent future drivers’ options and could miss 
valuable opportunities for households, utilities and the regulator.

Existing approaches to modelling large-scale charging demand 
impute charging decisions based on early-adopter behaviours or 
modeller assumptions about driver behaviour9,10,25–27. Numerous 
previous studies have used charging controls to improve the grid 
impact and costs of EVs8,9,25,26,28–36. However, most studies have lim-
ited scenarios regarding charging infrastructure access, use centrally 
optimized controls rather than site by site, rate schedule-driven opti-
mizations or focus on current grid resources and conditions, and 
few include grid storage and calculate emissions (Supplementary 
Note 1). Previous studies with different charging infrastructure sce-
narios have mostly focused on early adopters and do not concep-
tualize infrastructure as a tool for charging control9,10,26,34,37,38. The 
importance of charging infrastructure for long-distance travel and 
high-energy days to support EV adoption has been a focus of other 
recent studies18,39,40.
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The charging of EVs has consequences for the distribution, 
transmission and generation of electricity41. For example, uncon-
trolled charging has been shown to increase peak demand and cause 
transformer overloading5, force early replacement of equipment7, 
overload transmission lines28, worsen power quality4,6 or require 
substation upgrades42. Avoiding the high costs of distribution sys-
tem upgrades is a key value offered by controlled charging. EVs can 
also provide value to the grid by providing services of frequency 
regulation and real-time ramping43,44.

In this study, we model daily charging demand for personal EVs 
under high electrification scenarios in 2035 for the US portion of 
the Western Interconnection (WECC) grid, covering 11 states with 
over 75 million people45. We compare a range of future scenarios 
to understand how charging infrastructure, control and driver 
behaviour will together affect grid impact. Our study includes two 
strategies (control and infrastructure build-out) and uses realistic, 
detailed models of all three elements: driver behaviour, control and 
grid dispatch. We focus on typical, aggregate charging patterns of 
personal light-duty vehicles as drivers of generational-level grid 
impact. Our aim is to identify what scenarios of large-scale EV 
adoption best mitigate the negative consequences of charging and 
chart an effective decarbonization pathway via vehicle–grid integra-
tion. Our results urge the coupling of charging and grid-planning 
measures. To make charging controls more effective, policymakers 
should consider coordinating the management of grid generation 

and distribution impacts. Most importantly, planning should target 
build-out of charging infrastructure over the next decade that sup-
ports a shift from home to daytime charging in WECC.

Increased electricity consumption
Driver behaviour is highly heterogeneous. We use a probabilistic, 
data-driven method to capture driver charging preferences based 
on patterns observed in real charging data (Methods). We cali-
brate our model using a dataset of 2.8 million sessions recorded for 
27.7 thousand battery electric vehicle drivers in the California Bay 
Area in 2019. We model the connection between charging behav-
iour clusters and drivers’ income, housing, miles travelled and 
access to charging options as shown in Fig. 1. We implement con-
trolled charging site by site to simulate realistic responses to elec-
tricity rates. We focus on the US portion of the WECC grid and 
simulate charging for the more than 48 million personal vehicles in 
its 11 main states (Methods).

Recent planning in California finds 50% of the light-duty fleet 
will need to be electrified by 2035 to reach upcoming decarboniza-
tion deadlines and track timelines for the end of internal combus-
tion engine vehicle sales10,46. In line with these and other studies of 
high electrification47,48, we include results for 50% adoption or 24 
million EVs in WECC (electrification of half the personal vehicle 
fleet) in the year 2035. Industry and policymakers, however, are 
working to accelerate adoption even faster. We include results for 

Combustion generator dispatch

Storage and non-combustion generation

Model charging demand Aggregate regions in WECC Model grid Results

Capacity

Emissions

Costs

Storage

Renewables

+ timer control
+ workplace control

Driver behaviour group

Access to charging options

Battery size

Energy

Income

Housing

Distance

Region

Charging sessions

Segment decisions

Control

Load profile

a

b

WECC
27
24
21
18

C
ha

rg
in

g 
de

m
an

d 
(G

W
)

15

0 5 10 15

Hour of day

20
140

90
Sub-bituminous coal
Bituminous coal
Refined coal
Natural gas combined cycle
Natural gas combustion turbine
Natural gas boiler
Other

75

60

G
en

er
at

io
n 

co
st

 (
U

S
$ 

M
W

h–1
)

45

30

15

0

1,250

1,000

C
O

2 
em

is
si

on
s 

(k
g 

M
W

h–1
)

750

500

250

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Generation capacity (GW) Generation capacity (GW)

120

100

80

E
le

ct
ric

ity
 d

em
an

d 
or

 g
en

er
at

io
n 

(G
W

)

60

40

20

0
0 1 2 3 4 5 6 7 8 9 101112

Hour of day

1314151617181920

Wind
Solar
Hydro
Nuclear
Other combustion
Natural gas
Coal

212223

12
9
6
3
0

CA

13
12
11
10

9

C
ha

rg
in

g 
de

m
an

d 
(G

W
)

8
7
6
5
4
3
2
1
0

0 5 10 15
Hour of day

20

2

WA

1

0
0 5 10

Hour of day

15 20

C
ha

rg
in

g 
de

m
an

d 
(G

W
)

1
MT

0
0 5 10

Hour of day
15 20

C
ha

rg
in

g 
de

m
an

d 
(G

W
)

1
ID

0
0 5 10

Hour of day
15 20

C
ha

rg
in

g 
de

m
an

d 
(G

W
)

2

1

OR

0
0 5 10

Hour of day
15 20

C
ha

rg
in

g 
de

m
an

d 
(G

W
)

2

1

NV

0
0 5 10

Hour of day
15 20

C
ha

rg
in

g 
de

m
an

d 
(G

W
)

2

1

UT

0
0 5 10

Hour of day
15 20

C
ha

rg
in

g 
de

m
an

d 
(G

W
)

1

1

WY

0
0 5 10

Hour of day
15 20

C
ha

rg
in

g 
de

m
an

d 
(G

W
)

1
NM

0
0 5 10

Hour of day
15 20

C
ha

rg
in

g 
de

m
an

d 
(G

W
)

2

1

CO

0
0 5 10

Hour of day
15 20C

ha
rg

in
g 

de
m

an
d 

(G
W

)

2

1

AZ

0
0 5 10

Hour of day
15 20C

ha
rg

in
g 

de
m

an
d 

(G
W

)

Fig. 1 | Overview of the methods for evaluating grid impacts and modelling EV charging demand. a, An overview of the modelling approach. To study the 
grid impacts of EV charging scenarios, charging demand was simulated for each region using a model of driver behaviour, regional profiles were aggregated, 
and grid dynamics were modelled including non-fossil fuel generation, storage and the dispatch of fossil fuel generators. In scenarios with charging control, 
timer controls in residential charging were applied while generating each county's demand, and load modulation controls in workplace charging were 
applied to the aggregate uncontrolled workplace profile for WECC. States are identified by postal abbreviation. The hourly dispatch of net demand and total 
demand across both fossil and non-fossil fuel generation resources is illustrated for a sample day under the "Model grid" step. Original net and total demand 
profiles are shown with dot-dash and dotted lines, respectively, and the smoother net and total demand profiles achieved through the dispatch of 10 GW 
of grid storage are shown with solid and dashed lines, respectively. b, The model for EV charging demand in each region as a function of neighbourhood 
characteristics, access to charging and driver behaviours (Methods). The arrows are colour coded according to the data sources: US Census and Community 
Survey45 and EASI MRI Consumer Survey69 (light blue), California Vehicle Rebate Project (purple)71, California Energy Commission70 and National Renewable 
Energy Laboratory survey (red), University of California at Davis study12 (yellow), set of observed driversʼ charging sessions (green) and modelled (grey) as 
detailed in Methods. EASI MRI stands for Easy Analytic Software Inc. Mediamark Research, a database from which county-level annual mileage data was 
accessed.
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100% adoption (full electrification of the personal vehicle fleet) as 
a stress test to characterize grid readiness for deep adoption and 
identify what additional changes will be needed in the grid or in 
charging. We also present the sensitivity of all key results to higher 
or lower levels of adoption throughout the paper.

To calculate the grid impact at the generation level under each 
charging scenario, we dispatch the aggregate electricity demand for 
an entire year to a model of future grid generation resources that 
reflects forecast retirements and additions of fossil fuel generators 
and increased wind, solar and grid storage (Methods). We assume 
wind and solar generation vary hour by hour throughout the year 
as they did in 2019.

Baseline annual electricity consumption is assumed to increase by 
16% on average by 2035 due to electrification in applications other 
than transportation, such as heating and cooling48. We find that the 
addition of EV charging at deep adoption further increases annual 
electricity consumption by the same order of magnitude. Each per-
cent increase in EV adoption increases total consumption by about 
0.11% in this system (Supplementary Figure 7). At 50% adoption, this 
amounts to a 5% increase over the 2035 baseline. Combined, the total 
increase due to electrification in all sectors is up to 22% over 2019 lev-
els. In the stress test with 100% EV adoption, consumption is increased 
by 11% by EVs and by up to 28% overall over 2019 levels.

Charging scenarios
The timing of this increase in electricity use is critical, and 
the grid impacts of charging vary substantially with different 
demand profiles. Thus, we model four scenarios for future charg-
ing infrastructure varying home charging access from universal 
to low based on recent California survey data (Methods). With 
Universal Home access, 86% of total electricity consumption 
occurs at home, compared with 22% in the Low Home access 
cases (Supplementary Note 5 and Supplementary Table 2). Within 
each access scenario, we model four types of conventional charg-
ing control to represent common implementations in the United 
States today49: SFH timers set for 9 p.m. and 12 a.m. start times 
based on residential EV rates50,51 and site-level, uni-directional 
load modulation control at workplaces responding to demand 
charges through peak minimization or to time-of-use rates based 
on average grid emissions (Avg Em). Spikes in demand from syn-
chronous timers are observed in today’s charging data and persist 
in many planning scenarios10,52, despite their impacts on grid sta-
bility53,54. For contrast we model a third type of SFH timer control 
where participating drivers are randomly assigned a start time on 
the half hour between 8 p.m. and 2:30 a.m. Finally, we model an 
additional scenario, Business As Usual, as a special case of High 
Home Access with both workplace control and timers to represent 
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minimization workplace control. The weekday and weekend profile for each scenario is repeated to compile the full year's charging demand. L2 stands for 
Level 2 charging and DCFC stands for Direct Current Fast Charging.

Nature Energy | VOL 7 | October 2022 | 932–945 | www.nature.com/natureenergy934

Content courtesy of Springer Nature, terms of use apply. Rights reserved



ArticlesNatUrE EnErgy

today’s dominant mix of control strategies. This results in 25 total 
scenarios, a subset of which is illustrated in Fig. 2.

Increased peak demand
Baseline demand in WECC is the highest in the late afternoon and 
early evening. Peak total electricity demand on a typical weekday in 
2035 without EVs is modelled to be around 109 GW at 5 p.m. Each 
charging scenario lines up with this differently, as shown in Fig. 3. 
High home charging adds demand in the evening and pushes the 
peak later towards 7 p.m., while daytime charging creates new peaks 
mid-morning at 10 a.m. and 11 a.m. The value of the peak increases 
modestly with the addition of EV charging until around 30% adop-
tion, after which there are break points in several scenarios. The 
steepest increases occur in the charging scenarios with the highest 
peaks once the timings of the peak total demand and peak charging 
demand are aligned. With 50% adoption, the increase ranges from 

3% to 9% depending on the scenario, as shown in Fig. 4. In the stress 
test with 100% adoption, charging increases peak total demand by 
9–26%. Daytime-charging scenarios increase peak total demand by 
more than the High Home and Universal Home charging scenarios, 
except in cases with 9 p.m. timers.

Net demand and coupling with the grid
Total demand, however, does not tell the full story of grid impact, 
and it is critical to study how this demand is felt across the different 
sources of electricity generation. Net demand, calculated by remov-
ing the contribution of non-fossil fuel generation, drives the dis-
patch of fossil fuel generators.

To better understand these impacts, we developed a detailed 
model of the grid in 2035 based on the outputs of recent state- 
and region-level capacity expansion planning55,56. We extended 
the merit order-based dispatch model presented by Deetjen and 
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Azevedo57 to reflect announced generator retirements and addi-
tions, we increased baseline demand, and we increased solar and 
wind generation to a base case 3.5× and 3× 2019 levels, respec-
tively. We summed charging demand across fast and slow stations, 
home, workplace and public charging to study the impacts on the 
bulk-power system, and we assumed the distribution system could 
handle the demand (Methods).

Changes in peak net demand, shown in Fig. 4, reveal the 
opposite impact as total demand. Home charging scenarios, not 
daytime-charging scenarios, have a worse impact on peak net 
demand and put more stress on the remaining fleet of fossil fuel 
generators. Thanks to high solar generation during the day, peak 
net demand occurs in the evening in every scenario. The Business 
As Usual scenario increases typical peak net demand by 1.6× more 
than the Low Home, High Work scenario with 50% EVs or 1.8× 

with 100%. In the worst case, the Universal Home access scenario 
with 9 p.m. SFH timers increases it by 3.3× or 3.4×.

Focusing on daytime charging to minimize grid impacts is the 
first major conclusion of this study. First drawn here, it is supported 
by all following analyses. The timing of added demand is more 
important in the future grid with increased renewable generation. 
Daytime-charging scenarios benefit from their alignment with solar 
generation while overnight-charging scenarios miss that opportunity.

Grid capacity consequences
To ensure the grid’s capacity to support charging under high levels 
of EV adoption, storage will be needed. A small amount, 0.39 GW, 
is needed to meet baseline demand. California’s recent planning tar-
gets 9.7 GW of 4 h duration grid storage by 203058, which would be 
a more than 40× increase over 2019 levels.
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We find that 10 GW of storage installed in WECC is enough 
for the grid to support at least 50% EV adoption. In WECC in 
2035 with Business As Usual EV charging, 10 GW is between 8% 
and 9% of peak total demand on a typical weekday or between 
6% and 7% of peak total demand on an extreme day. The grid 
can support more EVs in scenarios with more daytime charging 
and fewer EVs in scenarios with more home charging, as shown 
in Fig. 5a.

In the best cases, with Low Home access, Business As Usual or 
High Home access with midnight or random timers, the grid can 
support charging for 100% EV adoption. In the worst case, with 
Universal Home access and 9 p.m. timers, the grid can support only 
59% EV adoption.

Charging controls are often presented as a solution to grid capac-
ity constraints and, indeed, we find that 12 a.m. SFH timers and ran-
domized SFH timers substantially increase the level of EV adoption 

that the grid can support. In the Universal Home access scenario, 
they increase the capacity from 67% to 86% and 83%.

Minimum grid storage requirements
Adding 10 GW of storage, however, is expensive, and thus we com-
pute how much storage is needed in each scenario. In Fig. 5b, we 
show the minimum amount of 4 h grid storage that would be suf-
ficient to cover all unmet demand. Fortunately, most scenarios 
require less than 10 GW to reach 50% or even 100% EV adoption, as 
shown in Fig. 5b,c. Again, we find that scenarios with more daytime 
charging are better than those with high home charging.

Policies supporting a future with Low Home, High Work access 
could translate into remarkable storage savings. With uncontrolled 
charging and 50% EV adoption, that scenario would decrease the 
storage requirement by 1.3× compared with Business As Usual 
or 1.7× compared with uncontrolled Universal Home access. 
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Fig. 5 | Limits to the grid’s capacity to support high EV adoption and the impact on grid storage. a, The maximum level of EV adoption for which charging 
can be supported before there is insufficient generation capacity at least 1 h in the year in the 2035 grid. There is capacity to support more EVs in the Low 
Home access scenarios, thanks to better alignment of charging with hours of low baseline demand and higher renewable generation. This model of the grid 
in 2035 includes 10 GW of technology-agnostic 4 h duration storage operated to smooth net demand. BAU stands for Business As Usual. Max stands for 
Maximum. b, The minimum capacity of 4 h duration storage that would enable the grid to support charging for increasing levels of EV adoption. This type 
of storage is dispatched after all other generation resources to cover unmet demand and we assume additional solar is deployed to charge it (Methods). 
c, A close-up look at the amount of storage required to support 50% or 100% EV adoption in 2035. With uncontrolled charging in the best case, the Low 
Home, High Work access scenario would require just 4.2 GW or 3.6% of typical weekday peak total demand for that scenario. In our stress test with 100% 
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Switching from Business As Usual charging to the Low Home, High 
Work access charging scenario would reduce the cost of installed 
storage by US$0.7 billion with an optimistic 143 US$ kWh−1 forecast 
for the cost of storage or US$1.5 billion with a higher forecast cost of 
299 US$ kWh−1 (refs. 59,60). These savings are substantial compared 
with total electricity costs (Supplementary Note 6) and grow sub-
stantially as we look at higher levels of EV adoption. In the stress 
test with 100% EV adoption, the switch to Low Home, High Work 
access would yield savings of US$1.6 billion or US$3.4 billion with 
either cost forecast.

Storage can also provide other values to the grid. Policies encour-
aging daytime charging could translate into better grid reliability by 
freeing storage capacity to act as reserve for extreme days or provide 
other grid services, rather than cover the peak demand induced by 
EV charging.

The second major conclusion of this study is that common 
charging control implementations can cause severe generation-level 
impacts at deep adoption. Timer control, in particular, can have sub-
stantial negative impacts. Studying the increase in peak net demand 
in Fig. 4, we saw 9 p.m. SFH timers lead to high increases, up to 
25% with 50% EV adoption or up to 50% with 100% EV adoption. 
The impacts on storage are less severe at 50% adoption, but looking 
to Fig. 5b, we can see that storage demand grows very quickly at 

higher levels. Additional generation capacity at 9 p.m. would need 
to be added before EV adoption reaches 100% in the Universal 
Home access scenario to avoid demand for storage topping 24 GW, 
an amount over 18% of typical peak total demand in 2035. With 
Low Home, High Work access, peak minimization control would 
increase the storage requirement by 1.5× over the uncontrolled 
amount by pushing charging into the late afternoon where baseline 
demand is already high, increasing peak net demand.

Ramping and non-fossil fuel generation impacts
In this section, we assume the planned amount of 10 GW grid stor-
age is added and operated to smooth net demand. Even so, there 
are substantial 1 h ramps in the final profiles dispatched to the fossil 
fuel generators, as shown in Fig. 6. This is an important metric for 
grid reliability, as frequent and fast ramping of fossil fuel generators 
can shorten plant lifetimes and increase operational costs43,61. All 
scenarios start from a situation where there are no EVs, and add-
ing daytime charging decreases ramping by flattening net demand 
while adding home charging increases ramping because it aligns 
with the baseline peak (Fig. 5 and Supplementary Note 7). Random 
and 12 a.m. SFH timers can decrease ramping in some scenarios, 
but the effect of adding control is small in comparison with the 
effect of switching between charging access scenarios.
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For some of our modelled days in the year, non-fossil fuel gen-
eration exceeds demand. Without modelling transmission, we can-
not determine if this excess generation is curtailed or exported to 
another region. In either case, it may represent a missed opportunity 
for WECC to reduce its emissions and increase its use of non-fossil 
fuel sources. Without EVs, the total annual excess non-fossil fuel 
generation is around 2.8 TWh. This amount decreases in all sce-
narios as more EVs are added, most quickly in scenarios with more 
daytime charging as shown in Fig. 6. Under the Business As Usual 
scenario with 50% EV adoption, there is 1.3 TWh; this drops to 
just 0.5 TWh with 100% EV adoption. Scenarios with high daytime 
charging align better with renewable generation and make use of 
more of that excess energy (Supplementary Note 7). Again, chang-
ing charging access has a bigger effect than adding control.

Grid emissions
Tailpipe emissions for internal combustion engine passenger vehi-
cles sold in the United States vary by type (Supplementary Note 8). 
As light-duty trucks and sport utility vehicles (SUVs) are the most 
popular segment, the US Environmental Protection Agency (EPA) 
estimates that the average passenger vehicle in the United States 
emits approximately 404 g of CO2 per mile from its tailpipe62. Sedans 
emit less; the 2019 Honda Civic, for example, emits approximately 
276 g of CO2 per mile (ref. 63). We find that the added grid emissions 

of CO2 per mile of EV charging in WECC are substantially lower, 
between 84 g and 88 g of CO2 per mile in a base case scenario for 
2035 renewables with 50% EV adoption or between 89 g and 93 g of 
CO2 per mile with 100% EV adoption. This represents a more than 
4× improvement in operational emissions compared with the aver-
age internal combustion engine vehicle or a 3× improvement com-
pared with a sedan, which is comparable in size and style to the EVs 
modelled here (Methods and Supplementary Note 8). Similar drops 
in SO2 and NOX are also observed (Supplementary Figs. 8 and 9).

Scenarios with less home charging yield lower CO2 emissions per 
mile, as shown in Fig. 7. This result is consistent across both grid 
scenarios and EV adoption levels. Under the base case ‘Medium 
Renewables’ scenario with 3.5× and 3× 2019 levels of solar and 
wind, the spread between the best and worst case is 5% at 50% EV 
adoption or 4.5% at 100% EV adoption. With High Renewables at 
5× 2019 levels, we see a larger difference in emissions between sce-
narios. Universal Home has up to 36% higher emissions per mile 
than Low Home, High Work access with 50% EVs, or up to 23% 
higher emissions with 100% EVs.

Different charging control strategies do not change our result 
by more than 2%. Uncontrolled workplace charging is well aligned 
with solar generation, and we see that average emissions minimi-
zation control does not meaningfully reduce emissions relative to 
uncontrolled. This occurs, in part, because average and marginal 
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emissions are misaligned. Average emissions are low during the day 
thanks to high solar generation, but marginal emissions are often 
higher during the day than at other times (Supplementary Figs. 10 
and 11). Though average emissions have been decreasing, marginal 
emissions have been increasing in the United States over the past 
decade64. The control used average emissions as a fixed objective 
throughout the year. This led to marginally better use of excess 
non-fossil fuel generation, as we saw in Fig. 7, but there were only 
up to 100 days in the year with excess non-fossil fuel generation to 
target. On the other days, this control increased daytime demand 
for fossil fuel generators with often high marginal emissions.

Improving this control design, however, would be difficult 
because the profile of marginal emissions and the dispatch order 
of generators changes throughout the year. Fig. 7b shows the high 
uncertainty in marginal emission factors, often higher at midday, 
and average emission factors, which are lowest at midday. Fig. 7c 
shows the merit order of fossil fuel generators from one week in 
the middle of the year. Both high- and low-emitting generators are 
present throughout the merit order, the daily profile of marginal 
emission factors is highly variable, and shifting demand for these 
generators has an inconsistent, small impact on total emissions.

Changing the grid
Current grid planning depends on models of future charging 
demand. This study has tested the sensitivity of those plans to dif-
ferent realizations of charging based on scenarios of driver behav-
iour, infrastructure and control. In Fig. 8, we test the sensitivity of 

our results to updates in grid planning. In each case, we draw the 
same conclusion: Low Home charging access reduces EV grid emis-
sions, storage requirements, ramping and excess non-fossil fuel gen-
eration when compared with scenarios of High or Universal Home 
charging access. The costs and emissions benefits of each charging 
scenario are discussed in Supplementary Note 9.

We provide a sensitivity analysis to natural gas prices, vehicle bat-
tery capacity and the prevalence of fast charging in Supplementary 
Figs. 17–19.

Discussion
Our results show the potential for charging infrastructure to 
improve the grid integration of EVs in WECC at deep levels of 
adoption. In the future grid with higher renewable generation, tim-
ing is more important and net demand tells a very different story 
than total demand. Shifting drivers from home to daytime charg-
ing improves all metrics of grid impact including ramping, use of 
non-fossil fuel generation, storage requirements and emissions. 
This insight is robust across varying levels of EV adoption.

Our results demand expanded daytime-charging access; simply 
limiting home charging could negatively impact adoption and con-
tribute to inequitable access to EV ownership. Policymakers should 
ensure daytime-charging options are convenient, inexpensive, 
widespread and open access to the public.

While the emissions reductions unlocked by switching between 
charging scenarios are modest with medium levels of renewables, 
the needed grid storage requirements are substantial. Storage is 
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expensive, current grid penetration is low and the industry is already 
under pressure to scale up in the face of other grid challenges. By 
avoiding the evening peak and better aligning with renewables, 
daytime-charging scenarios reduce the amount of storage required 
to support EV charging and free it to provide other services.

Our results also reveal challenges with charging controls based 
on existing and proposed rate schedules. Grid operator central-
ized controls can change this situation to guarantee smooth grid 
operations.

We reveal a conflict between system- and site-level benefits. Peak 
minimization control is widely implemented at commercial sites 
based on equipment capacity limits and electricity rates designed 
to protect distribution system infrastructure7. However, spreading 
workplace charging throughout the day increases demand in the 
late afternoon when high baseline demand and decreasing solar 
generation already strain the grid at the generation level, leading to 
higher storage requirements. Given the high costs of both grid stor-
age and distribution system upgrades, further research is needed to 
evaluate the trade-off between these objectives.

A similar conflict was recently identified with valley-filling con-
trol of home charging in the United Kingdom28. This also repre-
sents a tension between near-term concerns about infrastructure 
upgrades and long-term concerns about grid decarbonization. 
Utilities in California are moving away from demand charges 
at commercial EV sites to improve the economic case for station 
operators and encourage adoption65. A similar issue arises in resi-
dential rate design between simple and complex structures, which 
have better impacts on the grid54, but introduce practical, regulatory 
and ethical challenges involved in assigning different rates to neigh-
bouring customers.

We find that workplace control designed to align charging with 
low average grid emissions does not realize meaningful reduc-
tions when implemented. High variability in the dispatch order of 
generators and the profile of marginal emissions makes designing 
emissions-reducing rate schedules challenging. In addition to bal-
ancing distribution- and generation-level impacts, future electricity 
rates should better harmonize with wholesale electricity prices and 
could vary day by day with grid generation conditions.

Different assumptions regarding future baseline demand and 
generation resources could lead to different results, possibly invert-
ing the dynamics of daytime and nighttime charging. For example, 
controlled home charging could be best in systems with low over-
night demand and high dependence on overnight wind generation. 
Similarly, seasonal effects caused by changing outdoor temperature 
could impact the results in some regions. Coupling should also be 
explored with different scenarios of electrification in other sectors 
than transportation and with different pathways for grid decarbon-
ization. In any case, the time of day of charging matters.

The build-out of new charging stations represents a power-
ful multi-year timescale form of charging control to improve the 
impacts of EV charging, support equitable widespread adoption, 
reduce emissions, support renewable integration and smooth the 
transition to a decarbonized future.

Methods
Overview. We develop a model of EV charging and the electricity grid to study 
the consequences of charging demand on emissions, grid capacity, costs, storage 
and renewable integration in 2035 (Fig. 1a). First, we develop scenarios for the 
future minute-by-minute EV charging demand, modelling driversʼ charging 
behaviour across the WECC states using a probabilistic, data-driven model of 
driver behaviour and charging. We then explore a range of scenarios for controlled 
charging or for changing drivers’ access to charging at home and at work. We 
model controlled charging in both residential and workplace settings based on 
existing electricity rates. We repeat the typical weekday and weekend day profile 
for each charging scenario to represent a full year of charging demand. Second, 
we extend an existing model of the electricity grid to represent conditions and 
operation in 2035, using a reduced-order dispatch model to simulate the use of 
fossil fuel generators and considering future levels of renewable generation and 

grid storage. Then, combining the two elements, we calculate the grid dispatch over 
all 8,760 hours of the year and the emissions associated with the added demand 
from EV charging to study the impacts of each scenario.

EV charging demand. EV charging demand is driven by driver behaviour and 
vehicle type: where, when, how, how often and how much each driver charges. 
To model charging demand in WECC, we build on and substantially extend  
our earlier model of charging, which clustered drivers into distinct groups by 
their observed charging behaviours52. The complete modelling approach is 
detailed here.

Here we model only personal, light-duty vehicles and do not model scenarios 
for commercial medium- and heavy-duty vehicles. Commercial vehicles will follow 
very different charging patterns, dictated more by scheduling than individual 
driver behaviour or preferences. Medium- and heavy-duty vehicles will also 
experience different adoption timelines66.

A driver’s charging profile is influenced by mobility needs, by the 
characteristics of the vehicle and, critically, by access to charging in different 
locations. The data used for this study captures a wide range of behaviours for 
drivers of different makes and models of EVs.

To model the charging behaviour of drivers of lower-income groups, future 
adopters and other drivers under-represented in historical charging data, we used 
those three factors as an intermediate: we parameterize current drivers’ observed 
behaviour groups on their energy needs, vehicle battery capacity and access to 
charging and model how those factors would change to represent future drivers of 
different income or housing in different regions of the United States. The probabilistic 
model of charging demand connecting these features is depicted in Fig. 1b.

Each connection in Fig. 1b represents a conditional dependency: given 
the driver’s region, we model the probability they would have a particular type 
of housing, level of income and annual distance to travel; given the driver’s 
income and housing type, we model the probability they would have a large- or 
small-battery capacity vehicle and their probability of having access to different 
types of home or workplace charging; and given the driver’s annual mileage, we 
model their total annual demand for charging energy. The links were fit using a 
range of inputs and datasets described below.

Modelling the full range of early-, mid- and late-stage adopters is a key 
challenge to long-term planning for EVs. Late adopters are best represented in 
today’s data among residents of MUDs, drivers without access to home charging 
and drivers with small-battery vehicles. With this method, the unique behaviour 
patterns of drivers in each of those segments are captured and rescaled to build 
future charging scenarios.

The driver behaviour groups are identified by clustering drivers from a large 
dataset of real charging sessions52; each cluster represented a unique type of driver 
with a pattern of charging across different segments, charging at different times of 
day and charging with different frequencies. We design the feature vector for each 
driver to include their vehicle battery capacity and statistics describing their use 
of each charging segment: their number of sessions, their frequency of charging 
on weekends rather than weekdays and their mean session start time, energy and 
duration within each segment. We model the daily charging decisions and session 
parameters separately for the drivers in each group. The data do not reveal any 
clear direct connections between drivers’ behaviour groups and socioeconomic 
indicators after accounting for access, energy use and vehicle battery capacity. The 
behaviours observed and captured by these clusters represent revealed preferences 
of real drivers. Several behaviours identified in other studies are confirmed in 
this data including, for example, the presence of more and less risk-averse drivers, 
strong habits of regular charging and mixed use of different infrastructure13,67. 
These revealed behaviours are different from those identified through stated 
preference surveys17. The arrival times were further validated using data from the 
2016-2017 National Household Transportation Survey68 across different household 
income levels for respondents in the Bay Area (Supplementary Note 4).

To generate the scenarios presented in the paper, we model the charging 
demand for each county in the main 11 states in WECC separately and aggregate 
the regional profiles. WECC refers to the Western Interconnection, overseen by the 
Western Electricity Coordinating Council. In this study we excluded the Canadian 
and Mexican portions of the territory. We shift all charging demand onto Pacific 
time when creating the aggregate demand.

By concatenating the weekday and weekend profiles to compile one year of 
charging, we assume seasonal effects caused by changes in outdoor temperature 
can be neglected.

Data used to model charging demand. We accessed the number of passenger 
vehicles and the county-level distributions of housing types, household incomes 
and travel demand from census, community and consumer survey data45,69. We 
model the dependence of access to residential charging on income and housing 
type using data from a 2021 survey of Californians jointly conducted by the 
California Energy Commission and the National Renewable Energy Laboratory70. 
The survey defines three bins for annual household income: up to $60,000, 
between $60,000 and $100,000 and greater than $100,000. We match the survey 
housing types to five bins in the census data: SFH detached, SFH attached, low- 
and mid-rise apartments, high-rise apartments and mobile homes. We model 
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access to workplace charging based on a 2018 survey of California commuters12. 
We model the dependence of battery capacity on driver income using data from 
the California Clean Vehicle Rebate Project on over 400,000 purchases of electric 
vehicles in California between 2010 and 202071.

To model driver behaviour, we use a dataset of over 2.8 million charging 
sessions from 27.7 thousand battery electric vehicle drivers recorded by a large 
charging station provider in 2019 in the California San Francisco Bay Area. Each 
session is associated with a unique driver ID and the start time, end time, energy, 
charging rate and location category are known. The sessions cover five segments: 
workplace level 2 (L2) charging, public L2 charging, public fast charging (DCFC), 
SFH residential L2 charging and MUD residential L2 charging. L2 charging 
occurred at 6.6 kW and DCFC occurred at 150 kW.

Data cleaning is described in further detail in Supplementary Note 2 and 
Supplementary Methods, and statistics about the drivers and sessions are 
presented in Supplementary Figs. 1–3. Seventy-five percent of the sessions occur 
at workplaces, followed by 17% in public, 8% at SFHs and less than 1% (3,592 
sessions) at MUDs. Of the vehicles, 53% have large battery capacities (greater than 
50 kWh) and 47% have smaller battery capacities. The most common make is Tesla, 
followed by Chevrolet and Nissan. This dataset serves as revealed preference data 
and contains a rich set of behaviours.

Fitting model of charging demand. We assume that all drivers have access to 
public charging. We label home or workplace charging access for drivers in the 
dataset based on their charging history in 2019. We model free and paid workplace 
charging as separate categories of access and assign free access to drivers whose 
median session fee in 2019 was below US$0.05. We define four scenarios by 
varying drivers’ access to charging. For ‘Universal Home access’, we assume every 
driver of every housing and income level would have access to charging at home. 
For ‘High Home access’, we model access to home charging based on the ‘potential 
access with parking modification’ scenario from the survey70, assuming that L2 
charging would be installed for all drivers who responded that they could install 
some type of charging at their residence. In both ‘Universal Home access’ and 
‘High Home access’, we that assume 50% of high-income drivers would have access 
to workplace charging based on the 2018 study12, and lower-income drivers would 
be less likely to have access. For ‘Low Home, Low Work’, we modelled access to 
home charging based on the ‘existing access’ scenario from the survey70, assuming 
that only drivers who already park beside Level 1 (L1) charging equipment would 
be able to install L2 home chargers. For ‘Low Home, High Work’, we used the  
same model of low access to home charging but increased the probability of  
access to workplace charging, bounded by the fraction of Californians who  
drive to commute to work45. In all cases we assume workplace charging was free  
for 75% of those with access. The scenarios are illustrated in Fig. 1 and 
Supplementary Fig. 28.

We model the vehicle purchase decisions in the Clean Vehicle Rebate Project 
data with logistic regression, representing each driver’s income with their zip 
code’s median household income and using high-end vehicle makes to represent 
larger battery vehicles. The mean probability of a driver purchasing a large battery 
vehicle is 30.6%, 33.2% and 37.9% for drivers in the low-, middle- and high-income 
bins, respectively. We model the distribution of drivers’ total annual energy use 
by assuming a high mean efficiency in future EVs of 5 miles per kWh (ref. 72) with 
negligible losses to charging efficiency and define seven bins aligned with the 
annual mileage distributions: (0, 600), (600, 1,000), (1,000, 1,600), (1,600, 2,000),  
(2,000, 3,000), (3,000, 4,000), (4,000, +) kWh. We assume that the distribution  
of EVs over counties will match the current distribution of passenger vehicles at 
the high levels of EV adoption studied in this paper.

We cluster the drivers using agglomerative clustering with Ward’s method. 
The clustering algorithm is initialized with each driver as a separate cluster. Let 
xd represent the normalized feature vector describing driver d. At each step the 
algorithm chooses two clusters to combine such that the total within-cluster 
variance73 is minimized. Where Cl denotes the set of drivers in cluster l and xCl 
represents the centroid of the feature vectors of drivers in Cl, this can be  
expressed as

min
L∑

l=1

∑

d∈Cl

||xd − xCl ||2. (1)

This creates a hierarchy of clusters; the elbow plot showing the marginal benefit 
of each increase in the number of clusters is used to select the optimal cut-off. We 
cluster the drivers in each bin of annual charging energy separately and found a 
total of 136 groups. The typical weekday load profile for drivers in each group is 
illustrated in Supplementary Fig. 26.

We model the dependence of driver group on access, battery capacity and 
energy by calculating the distribution of cluster labels for drivers within each bin. 
Specifically, where NA,B,E denotes the number of drivers with access A in battery 
capacity bin B and energy bin E and where NG denotes the number of drivers in 
group G, the probability is calculated as P(G|A, B, E) = NA,B,E

G/NA,B,E.
The probability of a driver in a given group charging in each segment on a 

weekday or weekend day is modelled using the charging histories of drivers in 
the group. For each driver group G and charging segment z, we model the joint 

distribution of session parameters, start time and energy, s, using a Gaussian 
mixture model with up to K = 10 components ref. 74). The probability density 
function of the mixture can therefore be expressed as

P(s) =

K∑

k=1
P(s|k)P(k), P(s|k) = N (s|μk, σk). (2)

Each component, k, in the mixture model is a Gaussian distribution and its weight 
in the mixture is P(k). Each component represents a distinct pattern of charging 
behaviour that occurs in the sessions observed in segment z for drivers in group 
G. In this notation, component k has mean μk and standard deviation σk, and N  is 
short-hand for the standard Gaussian distribution formula.

We tested the sensitivity of charging behaviours to US states using the National 
Household Travel Survey68 and found that any differences in behaviour beyond 
those captured by our model of energy needs were small.

For a small number of battery and energy bins, there are no drivers with MUD 
access: we model the behaviour group distribution for those bins by using other 
bins in the MUD access category, matching as well as possible first by access, then 
energy and then battery capacity, based on observations of the relative impact of 
each on a group's profile. Modelling home charging access, we assume charging 
for residents of mobile homes could be represented by our data on MUDs and we 
derate the results of the survey by 50% to reflect the specific difficulty of installing 
L2 instead of L1 charging at a mobile home.

Because of the probabilistic, open-loop structure and the size of the census 
mileage bins, the total annual energy varies slightly between uncontrolled 
scenarios, from 8.654 × 107 MWh for the ‘Low Home High Work’ scenario to 
8.994 × 107 MWh for the ‘Universal Home’ scenario, a less than 5% difference.

Application of model of charging demand. To generate the daily charging 
demand in each scenario, we use this model to sample each charging session, 
repeating to simulate charging for the total number of vehicles in each region. The 
total set of sessions, their start times, energies and segment charging rates, were 
used to define the uncontrolled charging load profiles with 1 min time resolution. 
With this approach, we were able to generate the typical weekday and weekend 
demand profiles representing 48.6 million drivers for each scenario in under 9 min 
on a laptop computer. Controlled or smart charging is applied to the output of this 
module, using either the set of session parameters or the uncontrolled profiles.

Controlled EV charging. We model two types of controlled charging: load-shifting 
control at single family residences, where an uncontrolled session is delayed to a 
preset start time; and load modulation control at workplaces, where each vehicle at 
a site’s charging rate is modulated throughout its session to optimize the aggregate 
load profile. We focus on uni-directional charging because of its widespread 
implementation. Considerable regulatory, social and technical barriers remain to 
widespread deployment of bi-directional or vehicle-to-everything (V2X) charging, 
despite growing academic research on the topic. These challenges include the 
impact of V2X on battery health, drivers’ acceptance of V2X programs, taxation 
and warranty implications and the development of sufficient charging protocol, 
regulations and standards41,75.

Workplace charging control. To estimate the effect of load modulation control 
at large scale, we fit a data-driven model of control results for smaller-scale 
sites, following our method proposed by Powell et al.76. The complete approach 
is detailed here. In each case the driver receives the same amount of energy 
as without control. We implement peak minimization and average emissions 
minimization.

We simulate 1,000 workplace site-days with 150 vehicles in each by randomly 
sampling from the workplace charging sessions in the dataset. The optimization 
problem for each day’s charging is subject to constraints limiting the charging 
rate, charging time interval and ensuring each vehicle receives the same amount 
of energy as in the uncontrolled session. We assume the session parameters are 
known in advance. Written as functions of the total site load L at each time of day 
t, the controlled site load after peak minimization is L∗ = argmin maxt Lt . Given 
the daily average emission factor profile, et, simulated by the dispatch model for 
a scenario without EV charging demand, the controlled site load after emissions 
minimization is L* = argmin∑tetLt.

We use the results to learn a data-driven model of the mapping from the 
uncontrolled to controlled site profiles, f: L → L*. We model f with ridge regression, 
normalize and divide the 1,000 site profiles into training, development and testing 
sets and train the model with cross-validation and a grid search over the ridge 
parameter. The model root mean squared errors on the development set for the 
peak minimization and emission minimization optimizations respectively were 
2.06% and 3.34% of the peak load.

In the optimization formulation for workplace charging emissions 
minimization, we added a small regularization term proportional to the slope of 
the aggregate profile to encourage a smoother, more realistic charging dispatch.

To model the final profiles for the workplace control scenarios, we apply the 
trained model for each optimization objective to the total WECC uncontrolled 
workplace charging profile.
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Residential timer control. Over 31% of the residential charging sessions in our 
charging dataset demonstrate the use of timers to delay evening start times until 
the local utility’s lowest price period. We assume the same response rate in all 
future scenarios with timers.

We model load-shifting timer control by identifying the components in 
the Gaussian mixture models of session behaviours which represent those 
behaviours and shifting their start times. The ‘Random Timers’ scenario 
represents a theoretical case where residents using timers were randomly assigned 
rate schedules with lowest price periods starting at 8:30 p.m., 9 p.m., 9:30 p.m., 
10 p.m., ..., 2 a.m. and 2:30 a.m. To model uncontrolled residential charging, we 
remove those components of the mixture models and add their weight to other 
components with evening start times.

On weekends, the energy distributions for components of residential charging 
demand are more variable: modelling uncontrolled residential charging, we 
specifically target non-timer components with the closest energies to the timer 
components being removed.

Grid model. We model the US portion of WECC, building on the reduced-order 
generator dispatch model proposed by Deetjen and Azevedo57,77 and extending the 
model to consider both non-fossil fuel generation and grid storage.

The dispatch model constructs a merit order of generators for each week in 
the year using historical cost data and dispatches generators by lowest cost to 
meet each hour of demand. Costs and generator availability are updated weekly 
or monthly, depending on the available data, resulting in 52 different merit orders 
throughout the year. We construct the model using the latest available data from 
2019 and we add several extensions to represent the future grid: we remove or add 
generating units based on announced retirements and additions through 2035; 
we increase the baseline demand to represent electrification in other sectors; we 
include two scenarios for increased renewable generation; we model the behaviour 
of projected grid-scale storage additions and we add the demand from our EV 
charging scenarios.

As historical data on fuel price and production are used to calculate the 
generation cost for each plant, factors including efficiency, contract difference, and 
location lead plants of the same type to have different generation costs. As a result, 
the generators are not well ordered by their emission rates.

A range of grid models are used in the literature on EV charging impact, 
including models of transmission9,28, unit commitment25,34 and others29,32. The 
reduced-order dispatch model proposed by Deetjen and Azevedo57 is fast and 
computationally inexpensive, allowing us to compute and compare many scenarios. 
It is also open-source, highly customizable and based on publicly available data, 
allowing us to share our model of the future grid open-source, as well. A more 
detailed literature review is included in Supplementary Note 1.

Data used in grid model. Data collected by the EPA through its Continuous 
Emissions Monitoring Systems give the hourly operation, fuel consumption, 
capacity and emissions for each fossil fuel generating unit in WECC78. Data 
collected by the EPA in its Emissions and Generation Integrated Resource database 
give the construction date, fuel type and location of each plant79. Data collected 
by the US Energy Information Administration Form 923 dataset give the fuel 
purchases and prices for coal, natural gas and oil plants80. Hourly generation from 
non-fossil fuel sources including nuclear, hydro, wind, and solar was accessed 
through the US Energy Information Administration Electric System Operating 
Data website81.

Modelling the future grid. Planned and announced generation changes for 2035 
are the result of capacity expansion planning models which include a Business 
As Usual base case forecast of EV charging demand. We use the results of these 
models and announcements to update our model of grid generation, then change 
the portion of demand from EVs to test the sensitivity of grid impacts to different 
charging scenarios.

Plants or units with announced retirements through 2035 are removed from 
the set of generators56: 7,644 MW of natural gas and 17,175 MW of coal capacity. 
Announced additions are included by duplicating the most similar existing plants, 
prioritizing those most recently online and in the same region as the additions56: 
14,283 MW of natural gas and no coal.

Baseline demand is scaled by a factor of 1.16 to represent electrification based 
on the Electrification Futures Study’s Reference electrification and Moderate 
technology advancement scenario load profile48,82. This factor was calculated as 
the average percent increase in consumption over 2018 levels across all states in 
WECC, excluding that associated with transportation electrification, using data 
made available by Mai et al.48 and interpolating between the years 2030 and 2040. 
This estimate represents the effect of a growing population, business-as-usual 
forecast increases in the use of electric technologies for heating, cooling, cooking 
and other end uses48 and moderate improvements in technology and efficiency83.

We develop two scenarios for the expansion of renewable generation based on 
recent projections spurred by California’s Senate Bill 100, ‘The 100 Percent Clean 
Energy Act of 2018’58. We assume the increases in capacity projected for California 
could be mirrored across the WECC region. Our ‘Medium Renewables’ scenario 
based on the 2035 projections puts wind and solar capacity 3× and 3.5× 2019 levels 
respectively; and our ‘High Renewables’ scenario based on the 2045 projections 

puts wind and solar capacity each at 5× 2019 levels. We model a baseline amount 
of battery storage in WECC of 10 GW capacity and 4 h duration based on the  
same report58,84.

We calculate the future demand faced by fossil fuel generators, Dff, by 
subtracting the adjusted non-fossil fuel based generation, Gnon-ff, from the total 
demand, Dtotal, adjusted for electrification by the factor αelect, and adjusted to include 
the added demand from EV charging, DEVs. The calculation can be expressed as

Dtotal = αelect
(
D comb

2019
+ Gnon-comb

2019
)
, (3)

Dcomb = Dtotal − Ghydro, nuclear
2019 − αwindGwind

2019

−αsolarGsolar
2019 + DEVs.

(4)

We use multipliers, αsolar and αwind, to adjust the renewable generation and in 
so assume that future installations will have the same capacity factors and 
operations as those in the 2019. We operated the 10 GW of baseline storage 
with charging schedule r1 before dispatch for peak-shaving, optimizing the 
operation to minimize the norm of the demand faced by combustion generators, 
r1∗ = argmin ||Dcomb − r1||2. Any overgeneration is curtailed at this point  
to ensure a non-negative Dff, dispatched. The final amount dispatched to the  
generators was

Dcomb, dispatched = |Dcomb − r1∗|. (5)

We also apply a second type of storage, after the generator dispatch, using 
additional storage to cover any unmet demand and optimizing to find the 
minimum additional capacity of 4 h storage needed.

The capacity of the grid to support EVs is limited by the maximum total 
capacity of the generators in each week of the year.

To test capacity and study impacts at lower adoption levels, we scale the output 
of the model for EV charging demand at 100%, assuming a constant distribution 
of adoption.

The capacity limit is the first percent EV adoption when the total load 
including EVs could not be supported. This measure is more sensitive to extreme 
days than studying the peak on an average day, but it represents a real limitation 
and important grid impact. It also represents an important threshold for grid 
reliability; operating near this limit, the grid is likely to fall short on days of 
lower-than-average generation or higher-than-average demand.

The dispatch model uses a heuristic to implement minimum downtime 
constraints for coal plants57. We assume these constraints would be active for 
the same time periods in the future grid. The dispatch model updates each week 
based on historical data on periods certain generators were offline in 2019, so the 
maximum generation capacity varies each week. When the window for which a 
minimum downtime constraint is triggered crossed the division between one week 
and the next, the capacity in that period is limited by the lower of the two weeks’ 
capacities. Meanwhile, the storage requirement is calculated not based on weekly 
limits but with an hourly time series of the demand that could not be met when 
running the dispatch model.

Projections of storage capacity in 2035 are highly uncertain and cover a 
wide range of values. Announced additions in WECC yield an approximate 8× 
increase over 2020 levels56. Though California already has more than three times 
the grid-scale storage capacity of any other state85, the Senate Bill 100 report 
requirement of 10 GW by 2030 would represent an increase of 50× the 2019 level 
of 0.2 GW (ref. 58). We assume this value would represent a fair base case projection 
for the total installation in WECC by 2035.

In the second type of storage implementation when adding additional storage 
capacity to cover unmet demand, we include a small regularization term in the 
objective to smooth operation of the battery. The additional storage is needed to 
meet evening capacity constraints. We assume it would be charged using additional 
solar and we do not iterate or re-dispatch with the added demand for charging the 
additional storage.

Grid model outputs. We calculate the total emissions at each hour as the sum of 
emissions from each generator that was dispatched. The last generator dispatched 
for each hour of demand is identified as the marginal generator, and its emission 
rate in kgCO2 kWh−1 determines the marginal emissions factor. To attribute the 
emissions caused by adding EVs in each scenario, we subtract the total emissions 
from the dispatch of a parallel scenario without EV charging demand.

We calculate the excess non-fossil fuel generation by summing the excess 
generation on hours where non-fossil fuel generation exceeds demand. The model 
does not represent transmission, interconnection or congestion; therefore, we do 
not model whether excess generation is curtailed or exported to another region.

Data availability
The charging data used in this study cannot be made publicly available due to 
privacy concerns for the individual drivers, but the model objects and charging 
profiles that were calibrated with that data and used in this study have been 
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made available at https://data.mendeley.com/datasets/y872vhtfrc/2with https://
doi.org/10.17632/y872vhtfrc.2. This minimum dataset makes it possible to 
run the charging model and simulate new future charging scenarios to test. 
G.V.C. (gcezar@stanford.edu) can be contacted with questions about access. 
The grid model was run using publicly available data. Instructions for its 
collection and processing are included with the code at https://github.com/
Stanford-Sustainable-Systems-Lab/speech-grid-impact. Please contact S.P., I.A. or 
R.R. with any questions.

Code availability
The code used for the analysis presented in this paper has been made available at 
https://github.com/Stanford-Sustainable-Systems-Lab/speech-grid-impact with 
DOI 10.5281/zenodo.7031008. Please contact S.P. with any questions.
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