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New study highlights 8-14% carbon 
reduction potential on average and up to 
43% through EV charge automation
Abstract 

This study used over 100,000 sessions of in-field electric vehicle (EV) charging data and the analysis 
of location- and time-based fuel mix of the power grid to characterize the carbon intensity of common 
EV charging patterns. Combining these data sets, the study showed that optimizing EV charging 
for carbon intensity would yield 8-14% reductions in related carbon on average across 44 states, 
and an average reduction of 43% in California due to the higher proportion of renewable energy.

The study also showed that time of use (TOU) 
rates do not always correspond to periods of 
lowest carbon intensity. Instead, in all regions, 
carbon optimization leads to the lowest carbon 
impact.

The study characterizes how EV charging 
emissions could vary by grid balancing 
authorities around the country. Carbon 
reductions are influenced by the regional mix 
of energy sources, with some regions offering 
a potential for higher reductions, although there 
are significant carbon savings to be had in most 
regions. As more states increase the share 
of energy produced by renewable sources, 
the carbon savings potential through load 
shaping will increase across the country.

The study demonstrated a significant carbon 
reduction potential for utilities who encourage 
customers to automate EV charging to optimize 
for carbon intensity. This insight will be 
important as utilities and policy makers look for 
effective ways to meet carbon emissions goals 

and balance the increasing complexities on both 
the supply and demand sides of the power grid.

On the supply side, a greater use of variable 
renewable energy such as solar and wind 
leads to more variable generation. Knowing 
the location- and time-based carbon intensity 
offers an opportunity to encourage EV charging 
when low-carbon energy is cheap and plentiful. 
Similarly, in times of excessive cost, grid 
constraints, or high carbon emissions, efforts 
to encourage demand reductions become more 
valuable.

This also means that at the regional transmission 
level, carbon can become a dispatchable 
objective. Dynamic EV charging rates would 
require automation that responds to carbon 
intensity fluctuations from power sources. 
This approach is an option for utility programs 
seeking to modulate disruptive changes from 
the expected increase in low-carbon energy 
sources combined with increasing customer 
demand for electricity as more EVs are adopted.
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While this study focused specifically on 
reduction of carbon emissions, as alluded to 
above, the same approaches should consider 
costs and grid constraints and jointly optimize 
this combination of factors. In addition, 

optimized charging scheme against the charging 
now and TOU schemes.

Data sources

Charging session data

This study examined more than 100,000 home 
charging sessions across 925 EVs in 44 states 
over a 1-year period (11/3/2019 – 11/2/2020). 
The anonymized data was gathered using the 
Sense Home Energy Monitor, a device about 
the size of a large smartphone that’s installed 
in the home’s electrical panel. Two sensors 
clamp around the service mains to monitor 
power usage. The monitor continuously tracks 
how much electricity the home is using and can 
detect individual devices turning on and off. 
It uses high-resolution waveform monitoring, 
measuring voltage at 1 million samples per 
sec and current at 41 thousand samples per 
second, and machine learning to disaggregate 
the electrical signatures of individual devices in 
the home.

Introduction 

This study sought to answer two questions 
using actual in-field EV charging data and 
location- and time-based grid carbon intensity 
data: what is the carbon impact of charging 
an EV, and can the carbon impact be reduced 
by adjusting charge times based on dynamic 
carbon intensity?

The study relied on two sources of data: actual 
car charging sessions across 44 states and 
carbon intensity data derived from generation 
fuel mix data from the grid operators (i.e., ISO/
RTO) and the EPA emissions data. After 
analyzing car charging patterns and regional 
carbon intensity data, the study simulated 
the carbon effects of adding flexibility 
to charging times.

The study showed that charging patterns and 
low carbon intensity windows varied by region 
and did not necessarily match with utilities’ 
conventional on-peak/off-peak rate periods. 
Across all regions, the more flexibility over 
time, the greater the carbon reductions. 

The study further analyzed the top 10 states 
with the most EVs in this dataset: California, 
Texas, Massachusetts, Washington, Florida, 
New York, New Jersey, Pennsylvania, Virginia 
and Illinois. The study also analyzed the carbon 
intensity trends and compared a carbon 

the controllable loads will expand beyond EVs 
and include devices in the home. The best 
targets for automation are major users of 
energy where the consumer only cares about 
the results – not when the energy is used.
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Figures 1 and 2 show the number of EVs in the study across all 30 balancing authorities and by state. 
The 10 states with the most EVs in this dataset were California, Texas, Massachusetts, Washington, 
Florida, New York, New Jersey, Pennsylvania, Georgia and Illinois.

Figure 1: The number of EVs across 30 grid balancing authorities.

Figure 2: EV distribution by state
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Carbon intensity data

About the Carbon Intensity Data 
Analysis

While marginal carbon intensity provides a useful 

signal for certain applications, average carbon 

intensity is used in similar contexts when large 

aggregate loads need to be shaped, such as in 

the Massachusetts Clean Peak Standard, New 

York City’s Local Law 97, and Google’s 24/7 

carbon-free methodology for its data centers [3].

This analysis improves the granularity of 

the existing average carbon intensity data that 

is typically an annual average and 2-3 years 

old. We follow the EPA eGRID framework [4] 

to produce hourly average carbon intensity 

data using the hourly generation fuel mix 

data from EIA. The carbon intensity data 

we use in this study is based on the most 

granular data available today, which is on 

the transmission level (e.g., ISO New England’s 

territory covers the six Northeastern states 

but only the aggregated generation fuel mix 

data is available). We would like to work with 

the ISO/RTO and utilities to make more granular 

data available to inform effective decision-

making to reduce emissions.

Carbon intensity was measured in pounds per 
megawatt hour over the same 1-year period. 
The study made a region-specific analysis and 
characterization of the grid carbon intensity 
data derived based on the generation fuel mix 
data from the grid operators (i.e., ISO/RTO) and 
the EPA emissions data.

The grid fuel mix and carbon intensity data 
used in this study is provided by Carbonara, 
a grid carbon intelligence platform. Carbonara 
provides real-time and forecasted grid carbon 
data across North American electricity 
markets and intelligence to effectively reduce 

carbon. Use cases include planning, reporting, 
and optimization for decarbonization and 
electrification projects like EVs, battery storage, 
smart devices, and 24/7 clean power. 

Simulation

Currently most EVs are charged by drivers 
immediately upon arrival at their charging 
station (“charge now”) or scheduled when 
(TOU) rates from the utility are lower. This study 
identified current charging patterns and 
simulated automation to minimize carbon 
intensity. The automation performance varied 
according to allowable charge delay with 
increases up to the study maximum of 24 hours.

Overview of EV charging data

To analyze the 100,000 charging sessions, 
the first step was to identify prevailing 
household charging patterns. The study mapped 
all of the sessions and grouped the data into 
typical charging patterns over the course of 
24 hours. Five types of patterns were found 
using the k-mean clustering algorithm:

1. Mid-night charge type: charging 
starts between 12am - 7am

2. Mid-night + late-afternoon charge 
type: charging starts between 
12am - 7am or 4pm - 8pm

3. Morning charge type: charging 
starts between 8am - 12pm

4. Late-afternoon charge type: 
charging starts between 4pm - 8pm

5. Night charge type: charging starts 
between 9pm - 12am

See Appendix for time window definitions.

5



Figure 3: Charge types based on the distribution of charging start times for one household

Figure 4: Charge types based on the distribution of charging start time windows for all households

Each charge type was analyzed for distribution 
across the households. Charge types 1 and 5 
showed lower variation in distribution than other 
types, suggesting that EV owners were using 
automated features in their car or charger to 
schedule their charging late at night when utility 
rates were low.

Types 2, 3 and 4 showed higher variability, 
suggesting that EV owners were charging when 
it was convenient. Types 2 and 3 appear to be 
customers who are home during the day. Type 
4 appears to be customers who start charging 
in the early evening hours after returning home 
from a commute.
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Charging patterns nationally showed that 
type 5, night charging, was the least commonly 
chosen option.

Figure 5: Breakdown of the five types across all the household data 
shows typical charging patterns

Grouping the types by state highlighted 
significant variability. For instance, in California, 
where TOU rates are common, type 1 charging 
after midnight had the highest occurrences. 
In Texas, Virginia, Washington and Illinois, 
type 4 with late afternoon charging patterns 
were most common. Virginia, Washington and 
Massachusetts had the smallest number of 
customers in Type 1. All of the states except 
California and New York had a significant 
percentage (roughly 25% or more) charging in 
the evening hours (Type 4).

Figure 6: Charging patterns in states with the largest numbers of EVs
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Overview of carbon intensity data

The study looked at the carbon intensity 
on the power grids in 30 grid balancing 
authorities. Figure 8 shows the carbon 
intensity of the 10 grid balancing authorities 

with the highest number of EV households 
over a one-week period. The graphs show that 
carbon intensity varies substantially by region.

Figure 8: Carbon intensity (lbs/MWh) over a 7-day period with the gray line indicating the national annual average
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Table 1: Variations in Carbon Intensity for 10 Grid Balancing Authorities

Grid Authority Max value/min value

CAISO California Independent System Operator 307%

SWPP Southwest Power Pool 259%

ERCOT Electric Reliability Council of Texas 197%

BPAT Bonneville Power Authority Transmission 181%

NYISO New York Independent System Operator 154%

FPC Duke Energy Florida, Inc. 153%

MISO Mid-con nent Independent System Operator 145%

PJM Pennsylvania Jersey Maryland 135%

ISONE Independent System Operator New England 123%

SOCO Southern Company Services, Inc. 117%

When carbon intensity was analyzed in real 
time, it was evident that carbon intensity varies 
widely from region to region and over time. As 
more renewable energy sources come onto 
the grid in various regions, carbon intensity will 
become more dynamic.

Table 1 shows the magnitude of variation 
across grid regions. For instance, BPAT has 
smaller absolute values but the magnitude 
of the variation is higher than MISO, which 
has high average carbon intensity but smaller 
variation.

Simulation setup

We next assessed whether flexibility to 
charge within a certain time window would 
have an impact on carbon emissions when 
compared to the baseline scenario. We assumed 
the consumer had flexibility to charge within 
a certain time window ranging from 6 to 24 hours. 

It’s possible to have a 24-hour or an even longer 
time window for residential EV drivers because 
they may not use their EV every day.

• Same start time

• New end time = end time + h (6 hours – 
24 hours)

We compared the baseline CO2 (as seen in 
the data) versus optimized CO2 (charging 
during the lowest carbon intensity times to 
reach the same kWh). A percent reduction 
is characterized as the total baseline CO2 minus 
the total optimized CO2 divided by the total 
baseline CO2.

Across all the regions and households, analyzing 
baseline CO2 versus optimized CO2 showed 
an 8-14% reduction in carbon on average 
when households charged to reduce carbon. 
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The highest carbon reduction of 43% was found 
in California.

The data indicated that optimizaton gets better 
with time flexibility. If you can shift charging 
within a 24 hour window, you can achieve 
14% carbon reductions on average; if you can 
only shift by 6 hours, the carbon reduction 
is 8% on average.

We then compared three different charging 
behaviors of the Types 2-4 households (charge 

now types) to assess the carbon impact of TOU 
charging:

• Charge now: as seen in the data

• TOU: delay charging until 12am (although 
different utilities may have different TOU 
programs, midnight belongs to off-peak hours 
across the board and actual charging data also 
shows that drivers scheduled EV charging to 
start late at night as seen in Figure 4)

• Carbon optimized: charge when the grid 
carbon intensity is lowest

Figure 9: Carbon reduction percent with different charging window flexibilities
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Figure 10: Carbon reduction percent by state (24 hours flexibility)

Figure 11: Normalized carbon impact comparison in top 10 grid regions
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Results

The significant variability in carbon intensity 
patterns across various regions means that 
TOU rates do not always correspond to 
periods of lowest carbon intensity. Instead, 
in all regions, carbon optimization leads to 
the greatest carbon reduction impact (Figure 11). 
For instance, in California (CAISO), where 
carbon intensity varies by 307%, choosing 
carbon optimization reduced carbon an average 
of 43%. In Texas (ERCOT), where carbon 
intensity varies by 197%, carbon optimization 
could reduce carbon by 18%. As increasing 
numbers of EVs are adopted, this magnitude of 
reduction could have a measurable impact on 
reaching state climate change goals.

Charging according to TOU could actually 
increase carbon impact in some cases. 
The TOU strategy led to higher carbon impact 
in three regions (CAISO, BPAT, and FPC), 
suggesting that TOU rate periods at utilities in 
those regions are not aligned with the carbon 
intensity of energy sources from the grid. In other 
regions, the TOU strategy led to lower or similar 
carbon impacts compared with charge now.

Across all regions, optimizing EV charging for 
carbon intensity would yield 8-14% reductions 
in related carbon on average. The more time 
flexibility in the charging window, the greater 
the carbon reductions. This suggests that 
a strategy that automates charging on 
the consumer’s behalf by offering options to 
charge within 8, 12 or 24 hours, for instance, 
will most successfully optimize for the dynamic 
changes in carbon intensity on the grid.

The analysis of carbon intensity demonstrated 
that peak hours are not necessarily dirty hours. 
Just as we need weather data to plan our daily 
activities, we also need carbon intensity data 
and forecasts to plan our electricity usage to 
reduce peak emissions, not just peak demand. 
Some regions, such as CAISO, have a clear daily 
pattern and so could benefit from better design 
of TOU rates that take carbon intensity into 
account. Some have smaller variations (ISONE, 
SOCO), and today have limited opportunities 
for carbon reduction by shaping loads. Others 
(SWPP, ERCOT) have large variations in carbon 
intensity but without clear daily patterns; these 
are the regions which will benefit the most 
from full real-time automation of key loads in 
residences.

While some regions show wider variations in 
their carbon intensity over the course of a day, 
all regions had enough variability to offer 
significant opportunities for carbon savings 
by taking advantage of dynamic variations 
as they occur, as shown in Figure 8. As more 
renewables come onto the grid, carbon intensity 
will become even more dynamic in the future. 
As a result, simple mechanisms like time of use 
will become less successful and will need to be 
replaced by dynamic, automated approaches.

Comparing figures 2 and 10, we can see that 
certain states with high EV ownership as 
well as higher carbon reductions offer more 
potential for emissions reductions. For instance, 
California and Texas are the top states for EV 
drivers as well as carbon potential. Other states 
such as Oregon and Arizona have high potential 
carbon savings but relatively fewer EV drivers.
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In developing carbon reduction models, utilities 
can use the location- and time-based carbon 
intensity data to incentivize customers to shape 
their consumption to reduce peak emissions 
in a way similar to today’s demand response 
program aiming to reduce peak demand. 
The data can also be used by utilities and their 
customers to track their emissions in a more 
accurate and timely manner in order to evaluate 
their decarbonization progress and inform more 
effective planning to meet their goals.

Conclusion

The study demonstrated the feasibility of 
using home energy monitoring to automate 
EV charging to reduce carbon emissions at 
the household level. It showed that carbon 
reductions of 8-14% could be achieved across 
most regions in the U.S. and a higher reduction 
of 43% in California. These findings indicate 
the potential for higher carbon reductions as 
regions use more renewable energy.

The utility industry is facing pressures to 
meet CO2 reduction goals while keeping 
pace with more intermittent sources of power 
and anticipating new energy loads from EVs. 
The ability to jointly optimize for CO2, cost, 
and grid constraints can provide the best 
performance at a system level. Dynamic 
signals from the power grid combined with EV 
charging automation could be used to shape 
consumer behavior, modulate peak demand as 
EV adoption grows, inform utilities’ incentive 
programs and reduce carbon.

At the same time, utilities and grid operators 
will be reliant on consumer acceptance of 
smart home technologies. Active consumer 
participation is necessary for demand and load 

to become more adaptable and responsive. 
Programs could be designed with realtime 
messaging that emphasizes the satisfaction 
EV owners will have from knowing they can 
charge during periods when energy is cleaner, 
cheaper and plentiful.

While this study analyzed the potential for 
carbon reduction only, a more comprehensive 
approach would also take into account energy 
costs and constraints on the grid. Optimizing 
for these factors jointly would identify the best 
times to use energy from both the consumer’s 
and grid operator’s perspective. Previous 
studies [5] have shown that this multi-objective 
optimization approach can achieve close to 
the optimal results. 
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Appendix

The analysis of EV charging patterns used the following charging start time windows:

• mid-night: 0-7am

• morning: 8am-12pm

• early afternoon: 1pm-3pm

• late afternoon: 4pm-8pm

• night: 9pm-12am

Figure 12 shows carbon intensity patterns for all 10 grid balancing authorities (shown separately in Figure 8):

Figure 12: Comparison of Carbon Intensity (lbs/MWh) by Grid Balancing Authorities
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